ANSWER AND SOLUTIONS

SECTION-A

1. Option (2)

1
2. Option (2)
does not exist
3. Option (3)

0
4. Option (4)

2: 1
5. Option (1)
47.5
6. Option (3)

3
7. Option (1)

1
8. Option (2)

2
9. Option (1)
-1
10. Option (2)

3 cm
11. Option (3)
$30-40$
12. Option (3)
$550 \mathrm{~cm}^{2}$
13. Option (1)
$2 \sqrt{10}$ units
14. Option (4)
$5\left(9 \mathrm{x}^{2}-4\right)$
15. Option (2)

Increases by 3
16. Option (1)
$p+q=1$
17. Option (3)

480
18. Option (1)
$\frac{3}{4}$
19. Option (2)

Both Assertion (A) and Reason (R) are true and Reason (R) is not the correct explanation of Assertion (A).
20. Option (4)

Assertion (A) is false but Reason (R) is true.

SECTION-B

21. (a) $x=3$ and $y=-4$ meet at $(5,7)$

Thus, $\mathrm{x}=3, \mathrm{y}=4$
OR
(b) Pair of equation $x=0$ (y-axis) and $y=-7$ is consistent.

Thus, $\mathrm{x}=0, \mathrm{y}=-7$
So, pair of linear equation is consistent.
22.

In $\triangle \mathrm{ABC}$
XZ || BC

So, by Thales theorem

$$
\frac{\mathrm{AZ}}{\mathrm{ZC}}=\frac{\mathrm{AX}}{\mathrm{BX}}=\frac{3}{2}
$$

Now in $\triangle A B M$ and $\triangle A X Y$

XY || BM

$$
(\because \mathrm{XZ} \| \mathrm{BC})
$$

$\angle 1=\angle 2$ (corresponding $\angle \mathrm{s}$)
$\angle 3=\angle 3$
(common)
$\Delta \mathrm{AXY} \sim \Delta \mathrm{ABM}$

$$
\begin{equation*}
\frac{A X}{A B}=\frac{X Y}{B M} \tag{1}
\end{equation*}
$$

Now $\frac{\mathrm{AX}}{\mathrm{BX}}=\frac{3}{2} \Rightarrow \frac{\mathrm{BX}}{\mathrm{AX}}=\frac{2}{3}$

$$
1+\frac{\mathrm{BX}}{\mathrm{AX}}=\frac{2}{3}+1
$$

$$
\frac{\mathrm{AX}+\mathrm{BX}}{\mathrm{AX}}=\frac{2+3}{3}
$$

$$
\frac{\mathrm{AB}}{\mathrm{AX}}=\frac{5}{3}
$$

$$
\begin{equation*}
\frac{\mathrm{AX}}{\mathrm{AB}}=\frac{3}{5} \tag{2}
\end{equation*}
$$

From (1) and (2)

$$
\frac{A X}{A B}=\frac{X Y}{B M}
$$

$\frac{3}{5}=\frac{X Y}{3}$
$X Y=\frac{3 \times 3}{5}=\frac{9}{5}$
$\mathrm{XY}=1.8 \mathrm{~cm}$
23. (a) $\sin \theta+\cos \theta=\sqrt{3}$
squaring both sides

$$
\begin{aligned}
& (\sin \theta+\cos \theta)^{2}=(\sqrt{3})^{2} \\
& \sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta=3 \\
& 1+2 \sin \theta \cos \theta=3 \quad\left\{\sin ^{2} \theta+\cos ^{2} \theta=1\right\} \\
& 2 \sin \theta \cos \theta=3-1 \\
& 2 \sin \theta \cos \theta=2 \\
& \sin \theta \cdot \cos \theta=1
\end{aligned}
$$

OR

(b) If $\sin \alpha=\frac{1}{\sqrt{2}}$ and $\cot \beta=\sqrt{3}$
$\operatorname{cosec} \alpha=\frac{1}{\sin \alpha}=\frac{1}{\left(\frac{1}{\sqrt{2}}\right)}=\sqrt{2}$

$$
\begin{aligned}
& \operatorname{cosec}^{2} \beta=1+\cot ^{2} \beta \\
& \operatorname{cosec}^{2} \beta=1+(\sqrt{3})^{2} \\
& \operatorname{cosec}^{2} \beta=1+3 \\
& \operatorname{cosec} \beta=\sqrt{4} \\
& \operatorname{cosec} \beta=2
\end{aligned}
$$

$$
\text { So, } \operatorname{cosec} \alpha+\operatorname{cosec} \beta=\sqrt{2}+2
$$

24. Greatest number which divides 85 and 72 leaving remainders 1 and 2 respectively will be HCF of $84(85-1=84)$ and $70(72-2=70)$

HCF of 70 and $84=14$

So, $p=5 r$
Put $\mathrm{p}=5 \mathrm{r}$ in (1)
$5 q^{2}=(5 r)^{2}$
$5 q^{2}=25 r^{2}$
$q^{2}=5 r^{2}$
5 divides q^{2}
5 divides q .
But p and q are mutually co-prime which is a constradiction, hence our assumption is wrong $\sqrt{5}$ is irrational number.
26. Let the two numbers be x and y such that $x>y$ According to problem
$\frac{1}{2}(x-y)=2$
$\Rightarrow \mathrm{x}-\mathrm{y}=4$

Subtract (1) from (2)

$$
\begin{gathered}
x+2 y=13 \\
-y=-4 \\
\hline 3 y=9 \\
y=9 / 3=3 \quad \Rightarrow y=3
\end{gathered}
$$

Put $y=3$ in (1)
$x-3=4$
$\mathrm{x}=7$
Thus, number are 7 and 3 .
27. Let $\sqrt{5}$ is a rational number
$\sqrt{5}=\frac{\mathrm{p}}{\mathrm{q}} \quad$ [p and q are co-prime]
Squaring both sides
$5=\frac{\mathrm{p}^{2}}{\mathrm{q}^{2}}$
$5 q^{2}=p^{2}$
5 divides p^{2}
5 divides palso
28.

$\mathrm{AB}=10 \mathrm{~cm}$
$\triangle \mathrm{ABC}$ is equilateral triangle
So, $\mathrm{AC}=\mathrm{BC}=10 \mathrm{~cm}$
In $\triangle \mathrm{ACO}$
By pythagoras theorem
$\mathrm{AC}^{2}=\mathrm{AO}^{2}+\mathrm{OC}^{2}$
$(10)^{2}=(5)^{2}+\mathrm{OC}^{2}$
$\mathrm{OC}^{2}=100-25=75$
$\mathrm{OC}=\sqrt{75}=5 \sqrt{3} \mathrm{~cm}$
$\mathrm{OC}=5 \times 1.7=8.5 \mathrm{~cm}$
Coordinates of third vertex $\mathrm{C}=(0,-5.5)$
29. (a)

In circle with centre O
$\angle \mathrm{TPO}=90^{\circ}$
(Angle between tangent and radius at point of contact is 90°)
$\angle \mathrm{TQO}=90^{\circ}$
(Angle between tangent and radius at point of contact is 90°)

In quadrilateral POQT
$\angle \mathrm{POQ}+\angle \mathrm{OQT}+\angle \mathrm{QTP}+\angle \mathrm{TPO}=360^{\circ}$
(Angle sum property of quadrilateral)
$\angle \mathrm{POQ}+90^{\circ}+\angle \mathrm{QTP}+90^{\circ}=360^{\circ}$
$\angle \mathrm{POQ}+\angle \mathrm{QTP}=360^{\circ}-90^{\circ}-90^{\circ}$
$\angle \mathrm{POQ}+\angle \mathrm{QTP}=180^{\circ}$

In $\Delta \mathrm{POR}$
$\angle \mathrm{POQ}+\angle \mathrm{OPQ}+\angle \mathrm{OQP}=180^{\circ}$
(Angle sum property of triangle)
$\angle \mathrm{OPQ}=\angle \mathrm{OQP}$
(Angle opposite to equal radii)
$\angle \mathrm{POQ}+2 \angle \mathrm{OPQ}=180^{\circ}$

From (1) and (2)
$\angle \mathrm{POQ}+\angle \mathrm{PTQ}=\angle \mathrm{POQ}+2 \angle \mathrm{OPQ}$
$\angle \mathrm{PTQ}=2 \angle \mathrm{OPQ}$
Hence proved

OR

(b)

In quadrilateral ABCD
$\angle \mathrm{B}=90^{\circ}$
$\mathrm{AD}=17 \mathrm{~cm}$
$\mathrm{DS}=3 \mathrm{~cm}$ (given) (given)
$\mathrm{DS}=\mathrm{DR}$
(Length of tangent from external point to circle are equal)

So, DR $=3 \mathrm{~cm}$
Now, $\mathrm{AR}=\mathrm{AD}-\mathrm{DR}=17-3=14 \mathrm{~cm}$
$A R=A Q$
(Length of tangent from external point to circle are equal)
$B Q=A B-A Q$
$B Q=20-14=6 \mathrm{~cm}$

In quadrilateral BQOP
$\angle \mathrm{POQ}+\angle \mathrm{BQO}+\angle \mathrm{BPO}+\angle \mathrm{PBQ}=360^{\circ}$
(Angle sum property)
$\angle \mathrm{POQ}+90^{\circ}+90^{\circ}+90^{\circ}=360^{\circ}$
$\angle \mathrm{POQ}=360^{\circ}-90^{\circ}-90^{\circ}-90^{\circ}$
$\angle \mathrm{POQ}=90^{\circ}$
Also $\mathrm{OP}=\mathrm{OQ}=\mathrm{r}($ Radii of circle $)$
Hence, PBQO is a square
$B Q=r=6 \mathrm{~cm}$
$=\pi \frac{\mathrm{h}^{2}}{4} \times \frac{4 \mathrm{~h}}{3}$
$\frac{1408}{21}=\frac{22}{7} \times \frac{4}{4} \times \frac{\mathrm{h}^{3}}{3}$
$h^{3}=\frac{1408}{22}=64$
$\mathrm{h}=4 \mathrm{~m}$
OR
(b)

$=\frac{1}{6} \times\left\{\frac{1}{3} \pi r^{2} h\right\}$
$\mathrm{r}=3 \mathrm{~cm}$
$\mathrm{h}=12 \mathrm{~cm}$
Required volume of icecream
$=\frac{2}{3} \pi \mathrm{r}^{3}+\left\{\frac{\pi \mathrm{r}^{2} \mathrm{~h}}{3}-\frac{1}{6} \times \frac{\pi \mathrm{r}^{2} \mathrm{~h}}{3}\right\}$
$=\frac{2}{3} \pi r^{3}+\frac{\pi r^{2} h}{3}\left\{1-\frac{1}{6}\right\}$
$=\frac{2}{3} \pi r^{3}+\frac{5}{6} \times \frac{\pi r^{2} h}{3}$
$=\frac{1}{3} \pi \mathrm{r}^{2}\left\{2 \mathrm{r}+\frac{5}{6} \times \mathrm{h}\right\}$
$=\frac{1}{3} \times \frac{22}{7} \times 9\left\{2 \times 3+\frac{5}{6} \times 12\right\}$
$=\frac{1}{3} \times \frac{22}{7} \times 9(6+10)$
$=\frac{66}{7} \times 16 \mathrm{~cm}^{3}=\frac{1056}{7}$
$=150.85 \mathrm{~cm}^{3}$

SECTION-I)

32.

Given : In $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$
To prove : $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
Proof : Construction Join D to C and B to E
Draw $\mathrm{DG} \perp \mathrm{AC}, \mathrm{EF} \perp \mathrm{AB}$
Area of $\triangle \mathrm{ADE}=\frac{1}{2} \times \mathrm{AD} \times \mathrm{EF}\left\{\frac{1}{2} \times\right.$ Base \times Height $\}$

Area of $\triangle \mathrm{BDE}=\frac{1}{2} \times \mathrm{BD} \times \mathrm{EF}$

Area of $\triangle \mathrm{ADE}=\frac{1}{2} \times \mathrm{AE} \times \mathrm{DG}$

Area of $\triangle \mathrm{DEC}=\frac{1}{2} \times \mathrm{EC} \times \mathrm{DG}$
$\frac{\operatorname{Ar} \triangle \mathrm{ADE}}{\mathrm{Ar} \triangle \mathrm{BDE}}=\frac{\frac{1}{2} \times \mathrm{AD} \times \mathrm{EF}}{\frac{1}{2} \times \mathrm{BD} \times \mathrm{EF}}=\frac{\mathrm{AD}}{\mathrm{BD}}$
$\frac{\operatorname{Ar} \triangle \mathrm{ADE}}{\mathrm{Ar} \triangle \mathrm{DEC}}=\frac{\frac{1}{2} \times \mathrm{AE} \times \mathrm{DG}}{\frac{1}{2} \times \mathrm{EC} \times \mathrm{DG}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
We known that triangles on same base and between same parallels are equal in area.
$\operatorname{Ar}(\triangle \mathrm{BDE})=\operatorname{Ar}(\triangle \mathrm{DEC})$
Hence from (1) and (2)
$\frac{\mathrm{AD}}{\mathrm{BD}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
Hence proved
33. (a) In $\triangle \mathrm{ABD}$
$\tan 60^{\circ}=\frac{\mathrm{AD}}{\mathrm{AB}}$
$\sqrt{3}=\frac{24}{x}$
$x=\frac{24}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$
$x=\frac{24 \sqrt{3}}{3}=8 \sqrt{3} \mathrm{~m}$
In $\triangle \mathrm{ABC}$
$\tan 30^{\circ}=\frac{\mathrm{BC}}{\mathrm{AB}}$
$\frac{1}{\sqrt{3}}=\frac{h}{8 \sqrt{3}}$
$h=\frac{8 \sqrt{3}}{\sqrt{3}}=8 \mathrm{~m}$
Height of other tower $=8 \mathrm{~m}$
In $\triangle \mathrm{CDE}$
$\mathrm{DE}=24-8=16 \mathrm{~m}$
$C E=8 \sqrt{3} \mathrm{~m}$
$\mathrm{DE}^{2}+\mathrm{CE}^{2}=\mathrm{DC}^{2}$
$(8 \sqrt{3})^{2}+(8)^{2}=\mathrm{DC}^{2}$
$64 \times 3+64=\mathrm{DC}^{2}$
$64 \times(3+1)=\mathrm{DC}^{2}$
$64 \times 4=\mathrm{DC}^{2}$
$16 \times 16=\mathrm{DC}^{2}$
$\mathrm{DC}=16 \mathrm{~m}$
Length of wire attached to the tops of both towers $=16 \mathrm{~m}$

OR

(b)

In $\triangle \mathrm{OCA}$ and $\triangle \mathrm{ODA}$
$\mathrm{OC}=\mathrm{OD} \quad($ Radii of same circle $)$
$\mathrm{AO}=\mathrm{AO} \quad$ (Common)
$\mathrm{AC}=\mathrm{AD} \quad$ (Length of tangent from outside point circle are equal)

By SSS property
$\Delta \mathrm{OCA} \cong \triangle \mathrm{ODA}$
So, $\angle \mathrm{OAD}=\angle \mathrm{OAC}=30^{\circ}\left(\right.$ Half of $\left.60^{\circ}\right)$
So, $\triangle \mathrm{ABO}$
$\sin 45^{\circ}=\frac{\mathrm{h}}{\mathrm{OA}}$
$(\mathrm{OB}=\mathrm{h}(\mathrm{let}))$
$\frac{1}{\sqrt{2}}=\frac{h}{\mathrm{OA}}$
$\sqrt{2} h=O A$
In $\triangle \mathrm{OAD}$
$\sin 30^{\circ}=\frac{\mathrm{r}}{\mathrm{OA}}$
$\mathrm{OA}=\frac{\mathrm{r}}{\sin 30^{\circ}}=\frac{\mathrm{r}}{\left(\frac{1}{2}\right)}$
$\mathrm{OA}=2 \mathrm{r}$
from (1) and (2)
$\sqrt{2} \mathrm{~h}=2 \mathrm{r}$
$h=\sqrt{2} r$
Height of centre of Balloon is $\sqrt{2}$ times its radius.

Hence proved
34. In $\triangle \mathrm{AOB}$
$\Rightarrow \mathrm{OA}=\mathrm{OB} \quad$ (Radii of same circle)
$\angle \mathrm{OAB}=\angle \mathrm{OBA}$
Let $\angle \mathrm{OAB}=\angle \mathrm{OBA}=\mathrm{x}$
So, $x+x+60^{\circ}=180^{\circ}$
$2 \mathrm{x}=120^{\circ}$
$\Rightarrow \mathrm{x}=60^{\circ}$
$\Delta \mathrm{OAB}$ is an equilateral Δ
$\angle \mathrm{AOB}=60^{\circ}$
Area of minor segment $A B=$
Area of sector AOB - Area of $\triangle \mathrm{AOB}$
$=\frac{\theta}{360^{\circ}} \times \pi r^{2}-\frac{\sqrt{3}}{4} \times(14)^{2}$
$=\frac{60^{\circ}}{360^{\circ}} \times \frac{22}{7} \times(14)^{2}-\frac{\sqrt{3}}{4} \times(14)^{2}$
$=102.66-84.86$
$=17.8 \mathrm{~cm}^{2}$
Area of major segment $=$ Area of circle

- Area of minor segment.
$=\pi \mathrm{r}^{2}-\frac{\theta}{360^{\circ}} \times \pi \mathrm{r}^{2}$
$=\pi r^{2}\left(1-\frac{60^{\circ}}{360^{\circ}}\right)$
$=\frac{22}{7} \times \frac{5}{6} \times 14 \times 14$
$=513.33 \mathrm{~cm}^{2}$

35. (a) Let first term of $\mathrm{AP}=\mathrm{a}$
and common difference $=\mathrm{d}$
According to problem
$\frac{a_{11}}{a_{17}}=\frac{a+10 d}{a+16 d}=\frac{3}{4}$
$4(a+10 d)=3(a+16 d)$
$4 a+40 d=3 a+48 d$
$4 a-3 a=48 d-40 d$
$a=8 d$

Required ratio $=\frac{a_{5}}{a_{21}}=\frac{a+4 d}{a+20 d}$

$$
\begin{aligned}
& =\frac{8 d+4 d}{8 d+20 d} \\
& =\frac{12 d}{28 d}=\frac{63}{14}=\frac{3}{7}
\end{aligned}
$$

Ratio of sum of first 5 forms to sum of first 21 terms.
$\frac{S_{5}}{S_{21}}=\frac{\frac{5}{2}[2 a+4 d]}{\frac{21}{2}[2 a+20 d]}$
$=\frac{5}{21} \times \frac{[2(8 d)+4 d]}{[2(8 d)+20 d]}$
$=\frac{5}{21} \times \frac{20 \mathrm{~d}}{36 \mathrm{~d}}$
$=\frac{5}{21} \times \frac{5}{9}$
$=\frac{25}{189}$

OR

(b) Total number of wooden logs $=250$
$\mathrm{a}=$ number of wooden logs in bottom row $=22$
Similarly
$\mathrm{a}_{2}=21$
$a_{3}=20$
Number of wooden logs in consecutive rows is

22, 21, 20, \qquad n terms
$\mathrm{a}=22$
$\mathrm{d}=21-22=-1$
$S_{n}=250$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$=\frac{\mathrm{n}}{2}[2(22)+(\mathrm{n}-1)(-1)]=250$

$$
\frac{\mathrm{n}}{2}[44-\mathrm{n}+1]=250
$$

$$
\frac{n}{2}(45-n)=250
$$

$$
45 n-n^{2}=500
$$

$$
n^{2}-45 n+500=0
$$

$$
n^{2}-25 n-20 n+500=0
$$

$$
n(n-25)-20(n-25)=0
$$

$$
(n-25)(n-20)=0
$$

$$
\mathrm{n}=20, \mathrm{n}=25
$$

$$
\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{20}=\mathrm{a}+19 \mathrm{~d}
$$

$$
=22+19(-1)
$$

$$
=22-19
$$

$$
=3
$$

There are 3 wooden logs in last $20^{\text {th }}$ row such that total number of wooden logs is 250 .

SEC'IION-E

36. (i) Length of photo $=18 \mathrm{~cm}$

Breadth of photo $=12 \mathrm{~cm}$
According to problem
$(18+x)(12+x)=(18 \times 12) \times 2$
$18 \times 12+12 x+18 x+x^{2}=18 \times 12 \times 2$
$x^{2}+30 x=18 \times 12$
$x^{2}+30 x-216=0$
(ii) Required standard form of quadratic equation is
$1 . x^{2}+30 . x+(-216)=0$
(iii) $x^{2}+30 x-216=0$
$x^{2}+36 x-6 x-216=0$
$x(x+36)-6(x+36)=0$
$(x-6)(x+36)=0$
$x=6, x=-36$
New length $=18+6=24 \mathrm{~cm}$
Breadth $=12+6=18 \mathrm{~cm}$

OR

$$
\begin{aligned}
& (18+x)(12+x)=220 \\
& 216+30 x+x^{2}=220 \\
& x^{2}+30 x-4=0 \\
& D=b^{2}-4 a c=900+16=916
\end{aligned}
$$

As D is not perfect square
\Rightarrow For no rational value of x area is $220 \mathrm{~cm}^{2}$.
37.

Rain fall	Number of sub.division	c.f.
$200-400$	2	2
$400-600$	4	6
$600-800$	7	13
$800-1000$	4	17
$1000-1200$	2	19
$1200-1400$	3	22
$1400-1600$	1	23
$1600-1800$	1	24

(i) Highest frequency is 7 of class interval $600-800$ so the modal class is $600-800$
(ii) $\frac{\mathrm{N}}{2}=\frac{24}{2}=12$

Median class $=600-800$
Median $=\ell+\frac{\frac{\mathrm{N}}{2}-\text { c.f. }}{\mathrm{f}} \times \mathrm{h}$
$=600+\frac{12-6}{7} \times 200$
$=600+\frac{6}{7} \times 200$
$=600+\frac{1200}{7}$
$=$ Median $=771.42$
OR

Rain fall	Number of sub.division	x_{i}	$\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$
$200-400$	2	300	600
$400-600$	4	500	2000
$600-800$	7	700	4900
$800-1000$	4	900	3600
$1000-1200$	2	1100	2200
$1200-1400$	3	1300	3900
$1400-1600$	1	1500	1500
$1600-1800$	1	1700	1700
	24	$\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$	$=20,400$

$\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{20,400}{24}$
$\overline{\mathrm{x}}=850$
(iii) Number of sub-division with good rainfall more than 1000 mm is $7(2+3+1+1)$
38. (a)

In $\triangle \mathrm{AOB}, \angle \mathrm{ABO}=30^{\circ}$
(given)
$\mathrm{OA}=75 \mathrm{~cm}$
(given)
$\angle \mathrm{OAB}=90^{\circ}$
(Angle between tangent and radius)
$\tan 30^{\circ}=\frac{\mathrm{OA}}{\mathrm{AB}}$
$\frac{1}{\sqrt{3}}=\frac{75}{\mathrm{AB}}$
$\mathrm{AB}=75 \sqrt{3} \mathrm{~cm}$
(b) In $\triangle \mathrm{OAB}$
$\sin 30^{\circ}=\frac{\mathrm{OA}}{\mathrm{OB}}=\frac{75}{\mathrm{OB}}$
$\mathrm{OB}=150 \mathrm{~cm}$
(c) $\mathrm{OQ}=75 \mathrm{~cm} \quad$ (Radius of circle)

In $\triangle \mathrm{AOB}$
$\frac{75}{B Q+75}=\sin 30^{\circ}$
$75=\frac{1}{2} \times(B Q+75)$
$150=\mathrm{BQ}+75$

$$
\begin{aligned}
& \mathrm{PB}=\frac{75 \times 75 \sqrt{3}}{150} \\
& \mathrm{~PB}=37.5 \sqrt{3} \\
& \mathrm{AP}=75 \sqrt{3}-37.5 \sqrt{3} \\
& \mathrm{AP}=37.5 \sqrt{3} \mathrm{~cm} \\
& \quad \mathrm{OR}
\end{aligned}
$$

$\angle \mathrm{OBA}=\angle \mathrm{QBP}$ (common)
$\Delta \mathrm{OAB} \sim \Delta \mathrm{QPB}$ (by AA similarity)
$\frac{\mathrm{PB}}{\mathrm{AB}}=\frac{\mathrm{QB}}{\mathrm{OB}}$
$\frac{\mathrm{PB}}{75 \sqrt{3}}=\frac{75}{150}$

$$
\begin{aligned}
& \frac{\mathrm{PQ}}{75}=\frac{\mathrm{QB}}{\mathrm{OB}} \\
& \frac{\mathrm{PQ}}{75}=\frac{75}{150} \\
& \mathrm{PQ}=\frac{75 \times 75}{150} \\
& \mathrm{PQ}=37.5 \mathrm{~cm}
\end{aligned}
$$

ANSWER AND SOLUTIONS

SECIION-A

1. Option (1)

165
2. Option (3)

20
3. Option (1)

All real values except 10
4. Option (4)

Not defined
5. Option (2)

12
6. Option (3)
$\frac{11}{36}$
7. Option (4)

IV quadrant
8. Option (3)

4
9. Option (1)
-12
10. Option (2)
$\pi \mathrm{r}(\ell+2 \mathrm{~h}+\mathrm{r})$
11. Option (4)

4
12. Option (1)

14, 38
13. Option (3)
$\frac{3}{11}$
14. Option (2)

5
15. Option (3)
16. Option (2)

2r
17. Option (2)
$2: 3$
18. Option (3)
± 3
19. Option (2)

Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A).
20. Option (3)

Assertion (A) is true but Reason (R) is false.

SECTION-B

21. $110,120,130$, 990
$\mathrm{a}_{\mathrm{n}}=990$
$\Rightarrow 110+(\mathrm{n}-1) \times 10=990$
$\therefore \mathrm{n}=89$
22.

$\mathrm{AP}=\mathrm{AS}, \mathrm{BP}=\mathrm{BQ}, \mathrm{CR}=\mathrm{CQ}$ and $\mathrm{DR}=\mathrm{DS}$
$\Rightarrow \mathrm{AP}+\mathrm{BP}+\mathrm{CR}+\mathrm{DR}=\mathrm{AS}+\mathrm{BQ}+\mathrm{CQ}+\mathrm{DS}$
$\Rightarrow \mathrm{AB}+\mathrm{CD}=\mathrm{AD}+\mathrm{CB}$
But $\mathrm{AB}=\mathrm{CD}$ and $\mathrm{AD}=\mathrm{CB}$
$\therefore \mathrm{AB}=\mathrm{AD}$
Hence, ABCD is a square.

OR

Length of tangent $=2 \times \sqrt{5^{2}-4^{2}}$

$$
\begin{aligned}
& =2 \times 3 \mathrm{~cm} \\
& =6 \mathrm{~cm}
\end{aligned}
$$

23.

$\Delta \mathrm{ADE} \sim \Delta \mathrm{GBD}$ and $\triangle \mathrm{ADE} \sim \Delta \mathrm{FEC}$
$\Rightarrow \Delta \mathrm{GBD} \sim \Delta \mathrm{FEC}$ (AA Criterion)
$\Rightarrow \frac{\mathrm{GD}}{\mathrm{FC}}=\frac{\mathrm{GB}}{\mathrm{FE}} \Rightarrow \mathrm{GD} \times \mathrm{FE}=\mathrm{GB} \times \mathrm{FC}$
or $\mathrm{FG}^{2}=\mathrm{BG} \times \mathrm{FC} \quad[\because \mathrm{GD}=\mathrm{FE}=\mathrm{FG}]$
Hence proved
24. Capacity of first glass $=\pi r^{2} \mathrm{H}-\frac{2}{3} \pi \mathrm{r}^{3}$
$=\pi \times 9(10-2)=72 \pi \mathrm{~cm}^{3}$
Capacity of second glass $=\pi r^{2} \mathrm{H}-\frac{1}{3} \pi r^{2} h$
$=\pi \times 3 \times 3(10-0.5)=85.5 \pi \mathrm{~cm}^{3}$
\therefore Suresh got more quantity of juice.
Extra amount $=13.5 \pi \mathrm{~cm}^{3}$
25. For Jayanti,

Favourable outcome is $(6,6)$ i.e, 1
Probability (getting the number 36) $=\frac{1}{36}$
For Pihu,
Favourable outcome is 6 i.e, 1
Probability (getting the number 36) $=\frac{1}{6}$
\therefore Pihu has the better chance.

OR

Total number of integers $=29$
(i) Prob. (Prime number) $=\frac{6}{29}$
(ii) Prob. (Number divisible by 7) $=\frac{4}{29}$

SECTION-C

26. Let us assume to the contrary, that $2 \sqrt{5}-3$ is a rational number
$\therefore 2 \sqrt{5}-3=\frac{\mathrm{p}}{\mathrm{q}}$, where p and q are integers and coprime and $q \neq 0$
$\Rightarrow \sqrt{5}=\frac{p+3 q}{2 q}$
Since p and q are integers $\therefore \frac{p+3 q}{2 q}$ is a rational number.
$\therefore \sqrt{5}$ is a rational number which is a contradiction as $\sqrt{5}$ is an irrational number.

Hence our assumption is wrong and hence $2 \sqrt{5}-3$ is an irrational number.

OR

$144=2 \times 2 \times 2 \times 2 \times 3 \times 3$
$180=2 \times 2 \times 3 \times 3 \times 5$
$\mathrm{HCF}=2 \times 2 \times 3 \times 3=36$
$13 m-16=36$
$13 m=52$
$\mathrm{m}=4$
27. $x+y=7$ and $2(x-y)+x+y+5+5=27$
$\therefore \mathrm{x}+\mathrm{y}=7$ and $3 \mathrm{x}-\mathrm{y}=17$
Solving, we get, $x=6$ and $y=1$
28. (i) $\mathrm{A}(1,7), \mathrm{B}(4,2), \mathrm{C}(-4,4)$

Distance travelled by Seema $=\sqrt{34}$ units

Distance travelled by Aditya $=\sqrt{68}$ units
$\therefore \quad$ Aditya travels more distance
(ii) Coordinate of D are

$$
\left(\frac{1+4}{2}, \frac{7+2}{2}\right)=\left(\frac{5}{2}, \frac{9}{2}\right)
$$

29. $\sin \theta+\cos \theta=\sqrt{3} \Rightarrow(\sin \theta+\cos \theta)^{2}=3$
$\Rightarrow 1+2 \sin \theta \cos \theta=3 \Rightarrow \sin \theta \cos \theta=1$
$\therefore \tan \theta+\cot \theta=\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}=1$
Hence proved
30. Required Area $=$ Area of triangle - Area of 3 sectors

Area of Triangle $=\frac{1}{2} \times 24 \times 7=84 \mathrm{~m}^{2}$
Area of three sectors
$=\frac{\pi r^{2}}{360^{\circ}} \times($ sum of three angles of triangle $)$
$=\frac{22 \times 7 \times 7 \times 180^{\circ}}{7 \times 2 \times 2 \times 360^{\circ}}=\frac{77}{4}$ or $19.25 \mathrm{~m}^{2}$
\therefore Required Area $=\frac{259}{4}$ or $64.75 \mathrm{~m}^{2}$

OR

Quantity of water flowing through pipe in 1 hour
$=\pi \times \frac{7}{100} \times \frac{7}{100} \times 15000 \mathrm{~m}^{3}$
Required time
$=\left(50 \times 44 \times \frac{21}{100}\right) \div\left(\pi \times \frac{7}{100} \times \frac{7}{100} \times 15000\right)$
$=2$ hours
31. LHS : $\frac{\frac{\sin ^{3} \theta}{\cos ^{3} \theta}}{1+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}+\frac{\frac{\cos ^{3} \theta}{\sin ^{3} \theta}}{1+\frac{\cos ^{2} \theta}{\sin ^{2} \theta}}$
$=\frac{\frac{\sin ^{3} \theta}{\cos ^{3} \theta}}{\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\cos ^{2} \theta}}+\frac{\frac{\cos ^{3} \theta}{\sin ^{3} \theta}}{\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin ^{2} \theta}}$
$=\frac{\sin ^{3} \theta}{\cos \theta}+\frac{\cos ^{3} \theta}{\sin \theta}$
$=\frac{\sin ^{4} \theta+\cos ^{4} \theta}{\cos \theta \sin \theta}$
$=\frac{\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{2}-2 \sin ^{2} \theta \cos ^{2} \theta}{\cos \theta \sin \theta}$
$=\frac{1-2 \sin ^{2} \theta \cos ^{2} \theta}{\cos \theta \sin \theta}$
$=\frac{1}{\cos \theta \sin \theta}-\frac{2 \sin ^{2} \theta \cos ^{2} \theta}{\cos \theta \sin \theta}$
$=\sec \theta \operatorname{cosec} \theta-2 \sin \theta \cos \theta$
= RHS

SEC'II(ON-I)

32. Given : $\mathrm{A} \triangle \mathrm{ABC}$ in which line ℓ parallel to BC ($\mathrm{DE} \| \mathrm{BC}$) intersecting AB at D and AC at E .

To prove : $\frac{A D}{D B}=\frac{A E}{E C}$

Construction : Join D to C and E to B. Through E draw EF perpendicular to AB i.e., $\mathrm{EF} \perp \mathrm{AB}$ and through D draw $\mathrm{DG} \perp \mathrm{AC}$.

Proof :

Area of $(\triangle \mathrm{ADE})=\frac{1}{2}(\mathrm{AD} \times \mathrm{EF})$
(Area of $\Delta=\frac{1}{2}$ base \times altitude)
Area of $(\triangle \mathrm{BDE})=\frac{1}{2}(\mathrm{BD} \times \mathrm{EF})$

Dividing (1) by (2)
$\frac{\text { Area }(\triangle \mathrm{ADE})}{\text { Area }(\triangle \mathrm{BDE})}=\frac{\frac{1}{2} \mathrm{AD} \times \mathrm{EF}}{\frac{1}{2} \mathrm{BD} \times \mathrm{EF}}=\frac{\mathrm{AD}}{\mathrm{DB}}$
Similarly, $\frac{\text { Area }(\triangle \mathrm{ADE})}{\text { Area }(\triangle \mathrm{CDE})}=\frac{\frac{1}{2} \mathrm{AE} \times \mathrm{DG}}{\frac{1}{2} \mathrm{EC} \times \mathrm{DG}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
$\frac{\text { Area }(\triangle \mathrm{ADE})}{\text { Area }(\triangle \mathrm{CDE})}=\frac{\mathrm{AE}}{\mathrm{EC}}$
$\operatorname{Area}(\triangle \mathrm{BDE})=\operatorname{Area}(\triangle \mathrm{CDE})$
[$\Delta \mathrm{s}$ BDE and CDE are on the same base DE and between the same parallel lines DE and BC.]

From (4) and (5)
$\frac{\operatorname{Area}(\triangle \mathrm{ADE})}{\operatorname{Area}(\triangle \mathrm{BDE})}=\frac{\mathrm{AE}}{\mathrm{EC}}$
From (3) and (6)
$\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
Hence proved.
33. Let the original speed of the train be $x \mathrm{~km} / \mathrm{h}$
$\therefore \quad \frac{360}{x}-\frac{360}{x+5}=\frac{48}{60}$
$\Rightarrow \quad x^{2}+5 x-2250=0$
$\Rightarrow \quad(\mathrm{x}+50)(\mathrm{x}-45)=0$
$\therefore \quad \mathrm{x}=45$
Hence original speed of the train $=45 \mathrm{~km} / \mathrm{h}$

OR

$\frac{1}{x}-\frac{1}{x-2}=3$
$\frac{x-2-x}{x(x-2)}=\frac{3}{1}$
$3 x^{2}-6 x=-2$
$3 x^{2}-6 x+2=0$
$x=\frac{6 \pm \sqrt{12}}{6}$
$=\frac{3+\sqrt{3}}{3}, \frac{3-\sqrt{3}}{3}$
34.

In $\triangle \mathrm{ABE}, \frac{\mathrm{BE}}{\mathrm{AB}}=\tan 60^{\circ}$
$\Rightarrow \mathrm{AB}=3000 \mathrm{~m}$

In $\triangle \mathrm{DAC}, \frac{\mathrm{DC}}{\mathrm{AC}}=\tan 30^{\circ}$
$\Rightarrow \mathrm{AC}=9000 \mathrm{~m}$
$B C=A C-A B=6000 m$
\therefore Speed of aeroplane $=\frac{6000}{30} \mathrm{~m} / \mathrm{s}=200 \mathrm{~m} / \mathrm{s}$

$$
=720 \mathrm{~km} / \mathrm{hr}
$$

35.

Daily Wages (in Rs.)	Number of Workers $\left(f_{i}\right)$	x_{i}	$u_{i}=\frac{x_{i}-a}{h}$	$f_{i} u_{i}$
$100-120$	10	110	-3	-30
$120-140$	15	130	-2	-30
$140-160$	20	150	-1	-20
$160-180$	22	170	0	0
$180-200$	18	190	1	18
$200-220$	12	210	2	24
$220-240$	13	230	3	39
Total	110			1

Here, $\mathrm{a}=170$
Mean daily wages $=170+\frac{1}{110} \times 20=₹ 170.19$ (approx.)

Mode $=160+\frac{22-20}{44-20-18} \times 20=₹ 166.67$ (approx.)

OR

Re-writing the distribution in the form of the grouped distribution with each class interval as 10 and taking assumed mean to be 55 , we get the following table.

Class	Mid - value $\left(\mathrm{x}_{\mathrm{i}}=\frac{\ell+\mathrm{u}}{2}\right)$	$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-\mathrm{A}$ $(\mathrm{A}=55)$	$\mathrm{u}_{\mathrm{i}}=\frac{\mathrm{d}_{\mathrm{i}}}{\mathrm{h}}$	Number of students $\left(\mathrm{f}_{\mathrm{i}}\right)$	$\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$
$0-10$	5	-50	-5	12	-60
$10-20$	15	-40	-4	10	-40
$20-30$	25	-30	-3	13	-39
$30-40$	35	-20	-2	15	-30
$40-50$	45	-10	-1	20	-20
$50-60$	$55=\mathrm{A}$	0	0	16	0
$60-70$	65	10	1	11	11
$70-80$	75	20	2	7	14
$80-90$	85	30	3	5	15
$90-100$	95	40	4	6	24

Mean $=\mathrm{A}+\frac{\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}}{\mathrm{f}_{\mathrm{i}}} \times \mathrm{h}=55+\frac{-125}{115} \times 10$
$=44.13$ (approx)

SECTION-E

36. (i) Since each row is increasing by 10 seats, so it is an AP with first term a $=30$, and common difference $\mathrm{d}=10$.

So number of seats in $10^{\text {th }}$ row
$=\mathrm{a}_{10}$
$=a+9 \mathrm{~d}$
$=30+9 \times 10=120$
(ii) $\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \times 30+(\mathrm{n}-1) 10]$

$$
\begin{aligned}
& 1500=\frac{n}{2}[2 \times 30+(n-1) 10] \\
& 3000=50 n+10 n^{2} \\
& n^{2}+5 n-300=0 \\
& n^{2}+20 n-15 n-300=0 \\
& (n+20)(n-15)=0
\end{aligned}
$$

Rejecting the negative value, $n=15$

OR

Number of seats already put up to the $10^{\text {th }}$ row $=S_{10}$
$\mathrm{S}_{10}=\frac{10}{2}\{(2 \times 30+(10-1) 10)\}$
$=5(60+90)=750$
So, the number of seats still required to be put are $1500-750=750$
(iii) If number of rows $=17$ then the middle row is the $9^{\text {th }}$ row $\mathrm{a}_{9}=\mathrm{a}+8 \mathrm{~d}=30+80=110$ seats
37. (i) Let AD be xcm , then $\mathrm{DB}=(12-\mathrm{x}) \mathrm{cm}$ $\because \mathrm{AD}=\mathrm{AF}, \mathrm{CF}=\mathrm{CE}, \mathrm{DB}=\mathrm{BE}$
[tangents to a circle from an external point]
$\therefore \mathrm{AF}=\mathrm{xcm}$,
then $\mathrm{CF}=(10-\mathrm{x}) \mathrm{cm}$
$\mathrm{BE}=(12-\mathrm{x}) \mathrm{cm}$,
then $C E=8-(12-x)=(x-4) c m$
Now CF = CE
$10-\mathrm{x}=\mathrm{x}-4$
$2 \mathrm{x}=14$
$\Rightarrow \mathrm{x}=7$
Hence, $\mathrm{AD}=7 \mathrm{~cm}$
Since, $\because B E=(12-x) \mathrm{cm}=(12-7) \mathrm{cm}$
[from (1)]
$B E=5 \mathrm{~cm}$
(ii) Radius, $\mathrm{OD}=4 \mathrm{~cm}$
and $\mathrm{AB}=12 \mathrm{~cm}$

Then, area of $\triangle \mathrm{OAB}$
$=\frac{1}{2} \times \mathrm{OD} \times \mathrm{AB}$
$=\frac{1}{2} \times 4 \times 12$
$=24 \mathrm{~cm}^{2}$
(iii) Perimeter of $\triangle \mathrm{ABC}=\mathrm{AB}+\mathrm{BC}+\mathrm{CA}$

$$
\begin{aligned}
& =(12+8+10) \mathrm{cm} \\
& =30 \mathrm{~cm}
\end{aligned}
$$

OR

Since, 100 cm cost $=$ Rs. 1500

So, 30 cm cost $=\frac{1500 \times 30}{100}=$ Rs. 450
38. (i) For cuboid
$\ell=15 \mathrm{~cm}, \mathrm{~b}=10 \mathrm{~cm}$ and $\mathrm{h}=3.5 \mathrm{~cm}$
Volume of the cuboid $=\ell \times \mathrm{b} \times \mathrm{h}$
$=15 \times 10 \times 3.5$
$=525 \mathrm{~cm}^{3}$
(ii) For conical depression :
$\mathrm{r}=0.5 \mathrm{~cm}$,
$\mathrm{h}=1.4 \mathrm{~cm}$
Volume of conical depression
$=\frac{1}{3} \times \frac{22}{7} \times 0.5 \times 0.5 \times 1.4$
$=\frac{11}{30} \mathrm{~cm}^{3}$
(iii) Volume of four conical depressions
$=4 \times \frac{11}{30}=1.47 \mathrm{~cm}^{3}$

OR

Volume of the wood in the entire stand
$=$ Volume of cuboid - Volume of 4 conical depressions
$=525-1.47$
$=523.53 \mathrm{~cm}^{3}$

ANSWER AND SOLUTIONS

SECTION-A

1. Option (4)

More than 3
2. Option (3)
$\cos \theta=\frac{\sqrt{\mathrm{b}^{2}-\mathrm{a}^{2}}}{\mathrm{~b}}$
3. Option (2)
$\mathrm{a}_{\mathrm{n}}=3.5$
4. Option (3)

Trigonometric ratios of the angles.
5. Option (2)
7.6
6. Option (3)

10
7. Option (2)
2.1
8. Option (2)
$\frac{5}{2}$
9. Option (1)
$360 \mathrm{~cm}^{2}$
10. Option (4)

Median
11. Option (3)

2 and -2
12. Option (4)

4
13. Option (3)

12
14. Option (4)

7000
15. Option (2)
$\sqrt{34}$
16. Option (3)
$\frac{1}{4}$
17. Option (2)

28
18. Option (2)
$\frac{\mathrm{BE}}{\mathrm{EC}}$
19. Option (4)

Assertion (A) is false but Reason (R) is true.
20. Option (2)

Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A).

SECTION-B

21. In $\triangle \mathrm{PAO}$ and $\triangle \mathrm{QBO}$,
$\angle \mathrm{A}=\angle \mathrm{B}=90^{\circ}$
(Given)
$\angle \mathrm{POA}=\angle \mathrm{QOB} \quad$ (Vertically opposite angles)
Since, $\triangle \mathrm{PAO} \sim \Delta \mathrm{QBO}, \quad$ (by AA similarity)
Then, $\frac{\mathrm{OA}}{\mathrm{OB}}=\frac{\mathrm{PA}}{\mathrm{QB}}$
or, $\frac{6}{4.5}=\frac{4}{Q B}$
or, $\mathrm{QB}=\frac{4 \times 4.5}{6}$
$\therefore \mathrm{QB}=3 \mathrm{~cm}$
22. Here, the total number of possible outcomes $=5$.
(i) Since, there is only one queen
$\therefore \quad$ Favourable number of elementary events = 1
$\therefore \quad$ Probability of getting the card of queen $=\frac{1}{5}$.
(ii) Now, the total number of possible outcomes $=4$.
Since, there is only one ace
$\therefore \quad$ Favourable number of elementary events $=1$
$\therefore \quad$ Probability of getting an ace card $=\frac{1}{4}$.
23. $\mathrm{HCF} \times \mathrm{LCM}=$ Product of two numbers
$9 \times 360=45 \times 2$ nd number
2 nd number $=72$

OR

Let us assume, to the contrary that $7-\sqrt{5}$ is rational
$7-\sqrt{5}=\frac{\mathrm{p}}{\mathrm{q}}$, where $\mathrm{p} \& \mathrm{q}$ are co-prime and
$q \neq 0$
$\Rightarrow \sqrt{5}=\frac{7 q-p}{q}$
$\frac{7 \mathrm{q}-\mathrm{p}}{\mathrm{q}}$ is rational $=\sqrt{5}$ is rational which is a
contradiction
Hence $7-\sqrt{5}$ is irrational
24. $20^{\text {th }}$ term from the end $=\ell-(\mathrm{n}-1) \mathrm{d}$

$$
\begin{aligned}
& =253-19 \times 5 \\
& =158
\end{aligned}
$$

OR
$7 \mathrm{a}_{7}=11 \mathrm{a}_{11}$
$\Rightarrow 7(\mathrm{a}+6 \mathrm{~d})=11(\mathrm{a}+10 \mathrm{~d})$
$\Rightarrow 4 \mathrm{a}+68 \mathrm{~d}=0$
$\Rightarrow a+17 d=0$
$\Rightarrow \mathrm{a}_{18}=0$
25. $\mathrm{x}=\frac{6-6}{5}=0$
$y=\frac{-10+15}{5}=1$
Hence, coordinates of point $\mathrm{P}(0,1)$

SECTION-C

26. Let the numerator be x and denominator be y.
\therefore Fraction $=\frac{x}{y}$
Now, according to question,
$\frac{x-1}{y}=\frac{1}{3} \quad \Rightarrow \quad 3 x-3=y$
$\therefore 3 x-y=3$
and $\frac{x}{y+8}=\frac{1}{4} \Rightarrow 4 x=y+8$
$\therefore 4 \mathrm{x}-\mathrm{y}=8$
Now, subtracting equation (ii) from (i), we have

$$
\begin{aligned}
& 3 x-y=3 \\
& 4 x-y=8 \\
& \frac{-\quad+-}{-x=-5} \\
& x=5
\end{aligned}
$$

Putting the value of x in equation (i), we have
$3 \times 5-\mathrm{y}=3 \Rightarrow 15-\mathrm{y}=3 \Rightarrow 15-3=\mathrm{y}$
$\therefore y=12$
Hence, the required fraction is $\frac{5}{12}$.

OR

Let the speed of car at A be $x \mathrm{~km} / \mathrm{h}$
And the speed of car at B be $y \mathrm{~km} / \mathrm{h}$
Case $18 x-8 y=80$

$$
x-y=10
$$

Case $2 \frac{4}{3} x+\frac{4}{3} y=80$
$x+y=60$
On solving $\mathrm{x}=35$ and $\mathrm{y}=25$
Hence, speed of cars at A and B are $35 \mathrm{~km} / \mathrm{h}$ and $25 \mathrm{~km} / \mathrm{h}$ respectively
27. $\mathrm{LHS}=\sin \theta(1+\tan \theta)+\cos \theta(1+\cot \theta)$
$=\sin \theta+\sin \theta \cdot \frac{\sin \theta}{\cos \theta}+\cos \theta+\cos \theta \frac{\cos \theta}{\sin \theta}$
$=(\sin \theta+\cos \theta)+\frac{\sin ^{2} \theta}{\cos \theta}+\frac{\cos ^{2} \theta}{\sin \theta}$
$=(\sin \theta+\cos \theta)+\frac{\sin ^{3} \theta+\cos ^{3} \theta}{\sin \theta \cos \theta}$
$=(\sin \theta+\cos \theta)\left[1+\frac{\sin ^{2} \theta+\cos ^{2} \theta-\sin \theta \cos \theta}{\sin \theta \cos \theta}\right]$
$=(\sin \theta+\cos \theta)\left[1+\frac{1}{\sin \theta \cos \theta}-1\right]$
$=(\sin \theta+\cos \theta) \times \frac{1}{\sin \theta \cos \theta}$
$=\frac{1}{\cos \theta}+\frac{1}{\sin \theta}$
$=\sec \theta+\operatorname{cosec} \theta$
= RHS
Hence proved
28. Volume of cylindrical bucket $=$ Volume of conical heap of sand.
$\pi \mathrm{r}^{2} \mathrm{~h}=\frac{1}{3} \pi \mathrm{R}^{2} \times 24$
$\pi \times 18 \times 18 \times 32$
$=\frac{1}{3} \pi \mathrm{R}^{2} \times 24$

$\mathrm{R}^{2}=\frac{18 \times 18 \times 32 \times 3}{24}=\frac{18 \times 18 \times 32 \times 3}{24 \mathrm{~A}}$
$\mathrm{R}=36 \mathrm{~cm}$
In the $\triangle A O B$ of conical heap.
$\mathrm{AB}^{2}=\mathrm{AO}^{2}+\mathrm{OB}^{2}$
$\ell^{2}=24^{2}+36^{2}$

$\ell=\sqrt{576+1296}$
$=\sqrt{1872}$
$\ell=43.27 \mathrm{~cm}=43.3 \mathrm{~cm}$
29.

Diagonals of parallelogram bisect each other
\Rightarrow midpoint of $\mathrm{AC}=$ midpoint of BD
$\Rightarrow\left(\frac{1+\mathrm{k}}{2}, \frac{-2+2}{2}\right)=\left(\frac{-4+2}{2}, \frac{-3+3}{2}\right)$
$\Rightarrow \frac{1+\mathrm{k}}{2}=\frac{-2}{2}$
$\Rightarrow \mathrm{k}=-3$
30. $200-250$ is the modal class

Mode $=\ell+\frac{\mathrm{f}_{1}-\mathrm{f}_{0}}{2 \mathrm{f}_{1}-\mathrm{f}_{0}-\mathrm{f}_{2}} \times \mathrm{h}$
$=200+\frac{12-5}{24-5-2} \times 50$
$=200+20.59=₹ 220.59$
31.

In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{CEF}$

$$
\begin{equation*}
\mathrm{AB}=\mathrm{AC} \tag{Given}
\end{equation*}
$$

$\Rightarrow \angle \mathrm{ABC}=\angle \mathrm{ACB}$
(Equal sides have equal oppposite angles)
$\angle \mathrm{ABD}=\angle \mathrm{ECF}$
$\angle \mathrm{ADB}=\angle \mathrm{EFC}$
[Each 90°]
So, $\triangle \mathrm{ABD} \sim \triangle \mathrm{ECF}$
(AA - Similarity)
OR

$\angle 1=\angle 2$
(Given)
$\mathrm{PT}=\mathrm{PS}$
(Side opposite to equal angles are equal)
$\Delta \mathrm{NSQ} \cong \angle \mathrm{MTR}$
$\begin{array}{ll}\angle \mathrm{Q}=\angle \mathrm{R} & \text { (by cpct) } \\ \mathrm{PQ}=\mathrm{PR} & \end{array}$
(Side opposite to equal angles are equal)
From (1) and (2)
$\frac{\mathrm{PT}}{\mathrm{PR}}=\frac{\mathrm{PS}}{\mathrm{PQ}}$
$\angle \mathrm{P}=\angle \mathrm{P}$
$\Delta \mathrm{PTS} \sim \triangle \mathrm{PRQ} \quad$ (by SAS Similarity)

SECTION-I

32. $S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{30}=\frac{30}{2}[2 a+29 d] \Rightarrow S_{30}=30 a+435 d$
$\Rightarrow S_{20}=\frac{20}{2}[2 a+19 d] \Rightarrow S_{20}=20 a+190 d$
$S_{10}=\frac{10}{2}[2 a+9 d] \Rightarrow S_{10}=10 a+45 d$
$3\left(\mathrm{~S}_{20}-\mathrm{S}_{10}\right)=3[20 \mathrm{a}+190 \mathrm{~d}-10 \mathrm{a}-45 \mathrm{~d}]$
$=3[10 \mathrm{a}+145 \mathrm{~d}]=30 \mathrm{a}+435 \mathrm{~d}=\mathrm{S}_{30}$
[From (i)]
Hence, $\mathrm{S}_{30}=3\left(\mathrm{~S}_{20}-\mathrm{S}_{10}\right) \quad$ Hence proved.
OR
Sum of first seven terms,
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$S_{7}=\frac{7}{2}[2 a+(7-1) d]=\frac{7}{2}[2 a+6 d]$
$\Rightarrow \quad 63=7 \mathrm{a}+21 \mathrm{~d}$
$\Rightarrow \quad \mathrm{a}=\frac{63-21 \mathrm{~d}}{7}$
$\Rightarrow \quad S_{14}=\frac{14}{2}[2 a+13 \mathrm{~d}]$
$\Rightarrow \quad \mathrm{S}_{14}=7[2 \mathrm{a}+13 \mathrm{~d}]=14 \mathrm{a}+91 \mathrm{~d}$
But ATQ,

$$
\begin{align*}
& \mathrm{S}_{1-7}+\mathrm{S}_{8-14}=\mathrm{S}_{14} \\
& 63+161=14 \mathrm{a}+91 \mathrm{~d} \\
\Rightarrow & 224=14 \mathrm{a}+91 \mathrm{~d} \\
& 2 \mathrm{a}+13 \mathrm{~d}=32 \\
& 2\left(\frac{63-21 \mathrm{~d}}{7}\right)+13 \mathrm{~d}=32 \tag{from1}\\
\Rightarrow & 126-42 \mathrm{~d}+91 \mathrm{~d}=224 \\
\Rightarrow & 49 \mathrm{~d}=98 \\
\Rightarrow & \mathrm{~d}=2 \\
\Rightarrow & \mathrm{a}=\frac{63-21 \times 2}{7}=\frac{63-42}{7}=3 \\
\Rightarrow & \mathrm{a}_{28}=\mathrm{a}+27 \mathrm{~d}=3+27 \times 2 \\
\Rightarrow & \mathrm{a}_{28}=3+54=57
\end{align*}
$$

33. Let OA be the tower of height h, and P be the initial position of the car when the angle of depression is 30°.

After 6 seconds, the car reaches to Q such that the angle of depression at Q is 60°. Let the speed of the car be v metre per second. Then,
$P Q=6 v \quad(\because$ Distance $=$ speed \times time $)$
and let the car take t seconds to reach the tower OA from Q (Figure). Then $\mathrm{OQ}=$ vt metres.

Now, in $\triangle \mathrm{AQO}$ we have
$\tan 60^{\circ}=\frac{\mathrm{OA}}{\mathrm{QO}}$
$\Rightarrow \sqrt{3}=\frac{\mathrm{h}}{\mathrm{vt}} \quad \Rightarrow \mathrm{h}=\sqrt{3} \mathrm{vt}$
Now, in $\triangle \mathrm{APO}$, we have
$\tan 30^{\circ}=\frac{\mathrm{OA}}{\mathrm{PO}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{h}}{6 \mathrm{v}+\mathrm{vt}} \Rightarrow \sqrt{3} \mathrm{~h}=6 \mathrm{v}+\mathrm{vt}$
Now, substituting the value of h from (i) and into (ii), we have
$\sqrt{3} \times \sqrt{3} \mathrm{vt}=6 \mathrm{v}+\mathrm{vt}$
$\Rightarrow 3 \mathrm{vt}=6 \mathrm{v}+\mathrm{vt} \Rightarrow 2 \mathrm{vt}=6 \mathrm{v} \Rightarrow \mathrm{t}=\frac{6 \mathrm{v}}{2 \mathrm{v}}=3$
Hence, the car will reach the tower from Q in 3 seconds.

OR

Let AC be the tree and BC^{\prime} be the broken part.
In $\triangle \mathrm{ABC}^{\prime}$
$\tan 30^{\circ}=\frac{\mathrm{AB}}{30}$
$\frac{1}{\sqrt{3}}=\frac{\mathrm{AB}}{30}$
$\frac{30}{\sqrt{3}}=\mathrm{AB}$
$\mathrm{AB}=10 \sqrt{3} \mathrm{~m}$
Also $\cos 30^{\circ}=\frac{\mathrm{AC}^{\prime}}{\mathrm{BC}^{\prime}}$
$\frac{\sqrt{3}}{2}=\frac{30}{\mathrm{BC}^{\prime}}$
$\mathrm{BC}=\frac{60}{\sqrt{3}}$
$\mathrm{BC}=20 \sqrt{3} \mathrm{~m}$
Total height $=A B+B C$

$$
\begin{aligned}
& =10 \sqrt{3}+20 \sqrt{3} \\
& =30 \sqrt{3} \mathrm{~m}
\end{aligned}
$$

34. In $\triangle \mathrm{APE}$ and $\triangle \mathrm{BPF}$,
$\angle \mathrm{APE}=\angle \mathrm{BPF} \quad$ [Vertically opposite angles]
$\angle \mathrm{AEP}=\angle \mathrm{BFP} \quad$ [Alternate angles]
By AA similarity, $\triangle \mathrm{APE} \sim \triangle \mathrm{BPF}$
Thus, $\frac{\mathrm{AP}}{\mathrm{BP}}=\frac{\mathrm{PE}}{\mathrm{PF}}=\frac{\mathrm{AE}}{\mathrm{BF}}$
In $\triangle \mathrm{CPE}$ and $\triangle \mathrm{DPF}$,
$\angle \mathrm{CPE}=\angle \mathrm{DPF} \quad$ [Vertically opposite angles]
$\angle \mathrm{CEP}=\angle \mathrm{DFP} \quad$ [Alternate angles]
By AA similarity, $\triangle \mathrm{CPE} \sim \triangle \mathrm{DPF}$
Thus, $\frac{C P}{D P}=\frac{P E}{P F}=\frac{C E}{D F}$
In $\triangle \mathrm{APC}$ and $\triangle \mathrm{BPD}$,
$\angle \mathrm{APC}=\angle \mathrm{BPD} \quad$ [Vertically opposite angles] $\angle \mathrm{ACP}=\angle \mathrm{BDP} \quad$ [Alternate angles]
By AA similarity, $\triangle \mathrm{APC} \sim \triangle \mathrm{BPD}$
Thus, $\frac{\mathrm{AP}}{\mathrm{BP}}=\frac{\mathrm{PC}}{\mathrm{PD}}=\frac{\mathrm{AC}}{\mathrm{BD}}$
From equations (1), (2) and (3), we get

$$
\frac{\mathrm{AE}}{\mathrm{BF}}=\frac{\mathrm{AC}}{\mathrm{BD}}=\frac{\mathrm{CE}}{\mathrm{FD}}
$$

Hence proved
35.

Class Interval	Frequency	cf
$0-100$	2	2
$100-200$	5	7
$200-300$	x	$7+x$
$300-400$	12	$19+x$
$400-500$	17	$36+x$
$500-600$	20	$56+x$
$600-700$	y	$56+x+y$
$700-800$	9	$65+x+y$
$800-900$	7	$72+x+y$
$900-1000$	4	$76+x+y$

$\mathrm{N}=100$
$\Rightarrow 76+x+y=100$
$\Rightarrow \mathrm{x}+\mathrm{y}=24$
Median $=525$
$\Rightarrow 500-600$ is median class

Median $=\ell+\frac{\frac{\mathrm{n}}{2}-\mathrm{cf}}{\mathrm{f}} \times \mathrm{h}$
$\Rightarrow 500+\left(\frac{50-36-x}{20}\right) \times 100=525$
$\Rightarrow(14-x) \times 5=25$
$\Rightarrow \mathrm{x}=9$
\Rightarrow from (1), $\mathrm{y}=15$

SECTION-I)

36. (i) Let the fixed charge for two days be Rs.x and additional charge be Rs.y per day.

As Radhika has taken book for 4 days.
It means that Radhika will pay fixed charge for first two days and pays additional charges for next two days.
$x+2 y=16$
(ii) As the fixed charge for two days be Rs.x and additional charge be Rs.y per day

It means that Amruta will pay fixed charge for first two days and pays additional charges for next four days.
$x+4 y=22$
(iii) $x+4 y=22$
$x+2 y=16$
On solving (i) and (ii)
Therefore, additional charges is $\mathrm{y}=$ Rs. 3

OR

For two more days price charged will be $2 \mathrm{y}=2 \times 3=6$

Total money paid by Amruta and Radhika is $22+16+6+6=$ Rs. 50
37. (i) Number of rose plants $=135$

Number of marigold plants $=225$
The maximum number of columns in which they can be planted
$=\mathrm{HCF}$ of 135 and 225
\therefore Prime factors of $135=3 \times 3 \times 3 \times 5$
and $225=3 \times 3 \times 5 \times 5$
\therefore Maximum number of columns $=$ HCF $(135,225)=3 \times 3 \times 5=45$

OR

Total number of plants $135+225=360$ plants
(ii) We have proved that the maximum number of columns $=45$

So, prime factors of $45=3 \times 3 \times 5$
$=3^{2} \times 5^{1}$
\therefore Sum of exponents $=2+1=3$.
(iii) Number of rows of Rose plants $=\frac{135}{45}=3$

Number of rows of marigold plants $=\frac{225}{45}=5$
Total number of rows $=3+5=8$
38. (i) Area of grass field $=15 \times 15=225 \mathrm{~m}^{2}$
(ii) Area of field horse can graze $=\frac{1}{4} \pi 5^{2}$
$=\frac{1}{4} \times \frac{22}{7} \times 25$
$=19.64 \mathrm{~m}^{2}$.
(iii) If rope was 10 m of grazing field
$=\frac{1}{4} \times \frac{22}{7} \times 100=78.57 \mathrm{~m}^{2}$

OR

Increase in area $=78.57-19.64=58.93 \mathrm{~m}^{2}$

ANSWER AND SOLUTIONS

SECTION-A

1. Option (2)
-1
2. Option (1)
$(3,1)$
3. Option (2)
$\mathrm{k} \leq 4$
4. Option (4)
$4 \sqrt{2} \mathrm{~cm}$
5. Option (1)
60°
6. Option (4)

9 units
7. Option (1)
7.8
8. Option (2) 162
9. Option (1)
$-\frac{9}{4}$
10. Option (1)

0
11. Option (4)

3
12. Option (3) 25
13. Option (4)
16.8 cm
14. Option (3)
$\frac{5}{4}$
15. Option (3)

4
16. Option (4)
17.5
17. Option (2)
$\tan 30^{\circ}$
18. Option (1)
$\sqrt{119} \mathrm{~cm}$
19. Option (4)

Assertion (A) is false but Reason (R) is true.
20. Option (3)

Assertion (A) is true but Reason (R) is false.

SECTION-B

21. Number divisible by 8 between 200 and 500 are 208, 216, 224 \qquad .496 which forms an A.P.
\therefore First term $(a)=208$, common difference $(d)=8$ $\mathrm{n}^{\text {th }}$ term of an A.P. is $\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$496=208+(n-1) 8$
$\Rightarrow \quad 288=(\mathrm{n}-1) 8$
$\Rightarrow \mathrm{n}-1=36$
$\Rightarrow \quad \mathrm{n}=37$
OR
Here, $\mathrm{a}=16, \ell=128$
$\mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}(\mathrm{a}+\ell)$

$$
\begin{aligned}
& =\frac{8}{2}(16+128) \\
& =4 \times 144 \\
& =576
\end{aligned}
$$

22. Total possible outcomes $=6 \times 6=36$

Favourable outcomes are $\{(1,6),(2,3),(3,2)$, $(6,1)\}$ i.e. 4 in number.
$\therefore \mathrm{P}($ getting the product 6$)=\frac{4}{36}=\frac{1}{9}$
23. If height is 40 cm
circumference of base of cylinder $=22 \mathrm{~cm}$
$2 \times \frac{22}{7} \times r=22$
$\mathrm{r}=\frac{7}{2} \mathrm{~cm}$
24. Any number which ends in zero must have at least 2 and 5 as prime factors.
$6=2 \times 3$
$6^{\mathrm{n}}=(2 \times 3)^{\mathrm{n}}$
$=2^{\mathrm{n}} \times 3^{\mathrm{n}}$
Hence, prime factor of 6 are 2 and 3
Thus, 6^{n} can never end with digit 0 .

OR

$90=2 \times 3^{2} \times 5$
$144=2^{4} \times 3^{2}$
$\mathrm{HCF}=2 \times 3^{2}=18$
$\mathrm{LCM}=2^{4} \times 3^{2} \times 5=720$
25. Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is equidistant from $\mathrm{A}(-5,3)$ and $\mathrm{B}(7,2)$
$\mathrm{AP}=\mathrm{BP}$
$\Rightarrow \sqrt{\left((x+5)^{2}+(y-3)^{2}\right)}=\sqrt{\left((x-7)^{2}+(y-2)^{2}\right)}$
$\Rightarrow x^{2}+10 x+25+y^{2}-6 y+9$
$=x^{2}-14 x+49+y^{2}-4 y+4$
$10 x-6 y+34=-14 x-4 y+53$
$10 x+14 x-6 y+4 y=53-34$
$24 x-2 y=19$
$24 x-2 y-19=0$
is the required relation.

SECTION-C

26. Radius of the cylinder $(\mathrm{r})=3.5 \mathrm{~cm}$

Height of the cylinder (h) $=10 \mathrm{~cm}$
Curved surface area of cylinder $=2 \pi \mathrm{rh}$
$=2 \times \frac{22}{7} \times \frac{35}{10} \times 10 \mathrm{~cm}^{2}$
$=220 \mathrm{~cm}^{2}$
Curved surface area of a hemisphere $=2 \pi \mathrm{r}^{2}$
Curved surface area of both hemispheres
$=2 \times 2 \pi r^{2}=4 \pi r^{2}=4 \times \frac{22}{7} \times \frac{35}{10} \times \frac{35}{10} \mathrm{~cm}^{2}$
$=154 \mathrm{~cm}^{2}$
Total surface area of the remaining solid
$=$ (Curved surface area of cylinder + curved surface area of 2 hemispheres)
$=(220+154) \mathrm{cm}^{2}=374 \mathrm{~cm}^{2}$.

OR

Given : $\mathrm{d}=24 \mathrm{~m}, \mathrm{~h}=3.5 \mathrm{~m}$
$\mathrm{r}=12 \mathrm{~m}$

Volume of rice $=\frac{1}{3} \pi 12^{2} \times 3.5=528 \mathrm{~m}^{3}$
Canvas cloth required to cover heap
$=\pi \mathrm{r} \ell$
$\ell=\sqrt{12^{2}+3.5^{2}}=12.50$
From (1)

Cloth required $=\frac{22}{7} \times 12 \times 12.5=471.43 \mathrm{~m}^{2}$
27.

Salary (₹ in thousand)	Number of Persons	c.f.
$5-10$	49	49
$10-15$	133	182
$15-20$	63	245
$20-25$	15	260
$25-30$	6	266
$30-35$	7	273
$35-40$	4	277
$40-45$	2	279
$45-50$	1	280

$\mathrm{n}=280, \frac{\mathrm{n}}{2}=140$

So, median class is $10-15$
$\ell=10, \mathrm{cf}=49, \mathrm{f}=133, \mathrm{~h}=5$

Median $=\ell+\frac{\frac{\mathrm{n}}{2}-\mathrm{cf}}{\mathrm{f}} \times \mathrm{h}$

$$
\begin{aligned}
& =10+\frac{140-49}{133} \times 5 \\
& =10+3.42 \\
& =13.42
\end{aligned}
$$

28. Let the radii of the largest semicircle, the smallest semicircle and the circle with diameter $B D$ be r_{1}, r_{2} and r_{3} respectively.

Given, $\mathrm{AE}=14 \mathrm{~cm} \Rightarrow \mathrm{r}_{1}=7 \mathrm{~cm}$
and $\mathrm{DE}=\mathrm{AB}=3.5 \mathrm{~cm} \quad \therefore \mathrm{r}_{2}=\frac{3.5}{2} \mathrm{~cm}$
$r_{3}=r_{1}-2 r_{2}=7-2 \times \frac{3.5}{2}=7-3.5=3.5 \mathrm{~cm}$
Area of the shaded region $=$ Area of semicircle with radius $r_{1}+$ Area of semicircle with radius $r_{3}-2 \times$ Area of semicircle with radius r_{2}

$$
\begin{aligned}
& =\frac{1}{2} \pi\left(\mathrm{r}_{1}\right)^{2}+\frac{1}{2} \pi\left(\mathrm{r}_{3}\right)^{2}-2 \times \frac{1}{2} \pi\left(\mathrm{r}_{2}\right)^{2} \\
& =\frac{1}{2} \pi\left\{\left(\mathrm{r}_{1}\right)^{2}+\left(\mathrm{r}_{3}\right)^{2}-2\left(\mathrm{r}_{2}\right)^{2}\right\} \\
& =\frac{1}{2} \times \frac{22}{7}\left\{(7)^{2}+(3.5)^{2}-2\left(\frac{3.5}{2}\right)^{2}\right\} \\
& =\frac{11}{7}\left\{49+12.25-\frac{12.25}{2}\right\} \\
& =\frac{11}{7}(49+6.125) \\
& =\frac{11}{7} \times 55.125=86.625 \mathrm{~cm}^{2}
\end{aligned}
$$

OR

Given, $\mathrm{AB}=6 \mathrm{~cm}$ and $\mathrm{BC}=10 \mathrm{~cm}$
By pythagoras theorem, in $\triangle \mathrm{ABC}$, we get
$\mathrm{AC}^{2}=\mathrm{BC}^{2}-\mathrm{AB}^{2}=(10)^{2}-(6)^{2}=64$
$\Rightarrow \mathrm{AC}=8 \mathrm{~cm}$
Let the radius of the incircle be r .
Let the circle touch side $A B$ at P, side $A C$ at Q and side BC at R .
Join OP, OQ and OR.
We know that the radius from the centre of the circle is perpendicular to the tangent through the point of contact.
$\therefore \mathrm{OP} \perp \mathrm{AB}, \mathrm{OQ} \perp \mathrm{AC}$ and $\mathrm{OR} \perp \mathrm{BC}$
Also, the tangents drawn from an external point to the circle are equal.
$\therefore \mathrm{AP}=\mathrm{AQ}, \mathrm{BP}=\mathrm{BR}, \mathrm{CR}=\mathrm{CQ}$
Now, in quadrilateral
$\mathrm{AQ}=\mathrm{AP}$ and $\angle \mathrm{AQO}=\angle \mathrm{APO}=\angle \mathrm{PAQ}=90^{\circ}$
OPAQ is a square.
$\therefore \mathrm{OP}=\mathrm{AQ}=\mathrm{AP}=\mathrm{OQ}=\mathrm{r}$
$\therefore \mathrm{PB}=6-\mathrm{r} \Rightarrow \mathrm{BR}=6-\mathrm{r}$

$$
\mathrm{CQ}=8-\mathrm{r} \Rightarrow \mathrm{CR}=8-\mathrm{r}
$$

Now, $\mathrm{BC}=\mathrm{BR}+\mathrm{CR}$
$\Rightarrow 10=6-\mathrm{r}+8-\mathrm{r} \Rightarrow 10=14-2 \mathrm{r}$
$\Rightarrow \mathrm{r}=2 \mathrm{~cm}$
Now, area of shaded region
$=$ Area of $\triangle \mathrm{ABC}-$ Area of circle
$=\frac{1}{2} \times \mathrm{AB} \times \mathrm{AC}-\pi \mathrm{r}^{2}=\frac{1}{2} \times(8) \times(6)-3.14(2)^{2}$
$=24-12.56=11.44 \mathrm{~cm}^{2}$
29. Sum of all the prizes $=$ Rs. 700

Let the first prize $=\mathrm{a}$
$\therefore 2^{\text {nd }}$ prize $=(a-20)$
$3^{\text {rd }}$ prize $=(a-40)$
$4^{\text {th }}$ prize $=(a-60)$
Thus, we have, first term $=\mathrm{a}$
Common difference $=-20$
Sum of 7 terms $S_{7}=700$
Since, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\Rightarrow 700=\frac{7}{2}[2(\mathrm{a})+(7-1) \times(-20)]$
$\Rightarrow 700=\frac{7}{2}[2 \mathrm{a}+(6 \times-20)]$
$\Rightarrow 700 \times \frac{2}{7}=2 \mathrm{a}-120$
$\Rightarrow 200=2 \mathrm{a}-120 \Rightarrow 2 \mathrm{a}=200+120=320$
$\Rightarrow \mathrm{a}=\frac{320}{2}=160$
Thus, the values of the seven prizes are Rs.160, Rs. $(160-20)$, Rs. $(160-40)$, Rs. $(160-80)$, Rs. $(160-100)$ and Rs. $(160-120)=$ Rs. 160, Rs.140, Rs.120, Rs.100, Rs.80, Rs. 60 and Rs. 40
30. LHS $=(1+\cot \mathrm{A}-\operatorname{cosec} \mathrm{A})(1+\tan \mathrm{A}+\sec \mathrm{A})$
$=\left(1+\frac{\cos \mathrm{A}}{\sin \mathrm{A}}-\frac{1}{\sin \mathrm{~A}}\right)\left(1+\frac{\sin \mathrm{A}}{\cos \mathrm{A}}+\frac{1}{\cos \mathrm{~A}}\right)$
$=\left(\frac{\sin \mathrm{A}+\cos \mathrm{A}-1}{\sin \mathrm{~A}}\right)\left(\frac{\cos \mathrm{A}+\sin \mathrm{A}+1}{\cos \mathrm{~A}}\right)$
$=\frac{(\sin \mathrm{A}+\cos \mathrm{A})^{2}-1}{\sin \mathrm{~A} \cos \mathrm{~A}}=\frac{1+2 \sin \mathrm{~A} \cos \mathrm{~A}-1}{\sin \mathrm{~A} \cos \mathrm{~A}}$
$=\frac{2 \sin \mathrm{~A} \cos \mathrm{~A}}{\sin \mathrm{~A} \cos \mathrm{~A}}$
$=2$
= RHS
Hence proved.
31. $\mathrm{BQ}=12 \mathrm{~cm}$,
$\mathrm{OB}=13 \mathrm{~cm}$
$\therefore \mathrm{OQ}=\sqrt{13^{2}-12^{2}}$

$$
=\sqrt{169-144}=\sqrt{25}
$$

$$
\mathrm{OQ}=5 \mathrm{~cm}
$$

Let $P Q=y$ and $P A=x$
In Δ POA : $x^{2}+13^{2}=(y+5)^{2}$
$x^{2}+169=y^{2}+10 y+25$

$$
\begin{equation*}
: x^{2}-y^{2}+169-25=10 y \tag{1}
\end{equation*}
$$

In $\triangle \mathrm{PQA}: \mathrm{x}^{2}=12^{2}+\mathrm{y}^{2}$

$$
\begin{equation*}
x^{2}-y^{2}=144 \tag{2}
\end{equation*}
$$

Put (2) in (1) $144+169-25=10 y$

$$
10 y=288 \Rightarrow y=28.8
$$

$\mathrm{PA}=\mathrm{x}=\sqrt{144+(28.8)^{2}}=\sqrt{973.44}$ $=31.2 \mathrm{~cm}$

SECNI(ON-I)

32.

We are given that
$\mathrm{BC}^{2}=\mathrm{AC} \times \mathrm{CD}$
$\Rightarrow \frac{\mathrm{BC}}{\mathrm{CD}}=\frac{\mathrm{AC}}{\mathrm{BC}}$
In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{BDC}$, we have
$\frac{\mathrm{AC}}{\mathrm{BC}}=\frac{\mathrm{BC}}{\mathrm{CD}}$
[Using (1)]
and $\angle \mathrm{BCA}=\angle \mathrm{DCB}$
$[$ Each $=\angle \mathrm{C}$ of $\triangle \mathrm{ABC}]$
$\Rightarrow \triangle \mathrm{ABC} \sim \triangle \mathrm{BCD}$
[By SAS similarity]
$\Rightarrow \frac{\mathrm{AC}}{\mathrm{BD}}=\frac{\mathrm{BC}}{\mathrm{CD}} \quad[\because \mathrm{AB}=\mathrm{AC}$ is given $]$
$\Rightarrow \frac{\mathrm{AC}}{\mathrm{BC}}=\frac{\mathrm{BD}}{\mathrm{CD}}$
i.e., $\frac{B D}{C D}=\frac{A C}{B C}$

From (1) and (2), we have
$\frac{B D}{C D}=\frac{B C}{C D}$
$\left[\because\right.$ Each $\left.=\frac{\mathrm{AC}}{\mathrm{BC}}\right]$
$\Rightarrow \mathrm{BD}=\mathrm{BC}$.
Hence proved
33. Let the usual speed of the train be $x k m / h$
$\frac{300}{x}-\frac{300}{x+5}=2$
$\Rightarrow \mathrm{x}^{2}+5 \mathrm{x}-750=0$
$\Rightarrow(\mathrm{x}+30)(\mathrm{x}-25)=0$
$\Rightarrow \mathrm{x}=-30,25$
\therefore Usual speed of the train $=25 \mathrm{~km} / \mathrm{h}$

OR

$\frac{1}{(a+b+x)}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}$
$\Rightarrow \frac{x-a-b-x}{x(a+b+x)}=\frac{b+a}{a b}$
$\Rightarrow-\mathrm{ab}=\mathrm{x}^{2}+(\mathrm{a}+\mathrm{b}) \mathrm{x}$
$\Rightarrow \mathrm{x}^{2}+\mathrm{ax}+\mathrm{bx}+\mathrm{ab}=0$
$\Rightarrow(x+a)(x+b)=0$
$\Rightarrow \mathrm{x}=-\mathrm{a},-\mathrm{b}$
34.

In $\triangle \mathrm{ABE}$,
$\frac{h}{x}=\tan 30^{\circ}$
$\Rightarrow \mathrm{x}=\mathrm{h} \sqrt{3}$
In $\triangle \mathrm{BDE}$,
$\frac{h+60+60}{x}=\tan 60^{\circ}$
$h+120=x \sqrt{3}$
$h+120=h \sqrt{3} \times \sqrt{3}$
$2 \mathrm{~h}=120$
$h=60$
\therefore height of cloud from surface of water
$=(60+60) \mathrm{m}=120 \mathrm{~m}$
35. Two solutions of each linear equation
$x+3 y=6$
and $2 \mathrm{x}-3 \mathrm{y}=12$
are given below.
(i)

\mathbf{x}	6	0
\mathbf{y}	0	2

(ii)

\mathbf{x}	6	0
\mathbf{y}	0	-4

The graphical representation of the given pair of linear equations is as follows :

Thus, the coordinates of point where the line $x+3 y=6$ intersects the y-axis at $(0,2)$ and the line $2 x-3 y=12$ intersects the y-axis at $(0,-4)$.

OR

Let the fraction be $\frac{x}{y}$.
According to question
$\therefore \mathrm{x}+\mathrm{y}=2 \mathrm{x}+4 \Rightarrow \mathrm{x}=\mathrm{y}-4$
Also, $\frac{x+3}{y+3}=\frac{2}{3}$
$\Rightarrow \frac{y-4+3}{y+3}=\frac{2}{3}$
$\Rightarrow \frac{y-1}{y+3}=\frac{2}{3}$
$\Rightarrow 3 y-3=2 y+6 \Rightarrow y=9$
Substituting the value of y in (i), we get
$x=5$
Thus, the required fraction is $\frac{5}{9}$.

SECTION-E

36. (i) Coordinates of $S=\left(\frac{-3+3}{2}, \frac{4+4}{2}\right)=(0,4)$
(ii) Coordinates of $\mathrm{T}=\left(\frac{3-2}{2}, \frac{4-1}{2}\right)=\left(\frac{1}{2}, \frac{3}{2}\right)$
(iii) Centriod of $\triangle \mathrm{PQR}=\left(\frac{-3+3-2}{3}, \frac{4+4-1}{3}\right)$

$$
=\left(\frac{-2}{3}, \frac{7}{3}\right)
$$

Coordinates of
$\mathrm{U}=\left(\frac{-3-2}{2}, \frac{4-1}{2}\right)=\left(\frac{-5}{2}, \frac{3}{2}\right)$

OR

Coordinates of Centroid of $\Delta \mathrm{STU}$

$$
=\left(\frac{0-\frac{5}{2}+\frac{1}{2}}{3}, \frac{4+\frac{3}{2}+\frac{3}{2}}{3}\right)=\left(\frac{-2}{3}, \frac{7}{3}\right)
$$

37. (i) Minimum number of books $=\operatorname{LCM}(32,36)$
$32=2 \times 2 \times 2 \times 2 \times 2$
$36=2 \times 2 \times 3 \times 3$
LCM $=2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3=288$
(ii) $\mathrm{HCF}=\frac{32 \times 36}{288}=4$

OR

$36=2 \times 2 \times 3 \times 3$
(iii) $\mathrm{p}=a \mathrm{~b}^{2}$
$=\mathrm{a} \times \mathrm{b} \times \mathrm{b}$
$\mathrm{q}=\mathrm{a}^{2} \mathrm{~b}=\mathrm{a} \times \mathrm{a} \times \mathrm{b}$
$\operatorname{LCM}(\mathrm{p}, \mathrm{q})=\mathrm{a} \times \mathrm{a} \times \mathrm{b} \times \mathrm{b}=\mathrm{a}^{2} \mathrm{~b}^{2}$
38. (i) $\angle \mathrm{ORP}=\angle \mathrm{OQP}=90^{\circ}$

In quadrilateral ROQP
$\angle \mathrm{P}+\angle \mathrm{O}+\angle \mathrm{ORP}+\angle \mathrm{OQP}=360^{\circ}$
$\angle \mathrm{O}=180^{\circ}-30^{\circ}$
$\angle \mathrm{ROQ}=150^{\circ}$
(ii) $\angle \mathrm{RSQ}=\frac{1}{2} \angle \mathrm{ROQ}$

$$
\begin{aligned}
& =\frac{1}{2} \times 150^{\circ} \\
& =75^{\circ}
\end{aligned}
$$

(iii) In $\triangle \mathrm{ORQ}$
$\mathrm{OQ}=\mathrm{OR} \quad$ [Radii of same circle $]$
$\angle \mathrm{OQR}=\angle \mathrm{ORQ} \quad$ [Angle opposite to equal sides are equal]
$\angle \mathrm{OQR}+\angle \mathrm{OQR}+150^{\circ}=180^{\circ}$
$\angle \mathrm{OQR}=15^{\circ}$
$\angle \mathrm{RQP}=90^{\circ}-15^{\circ}=75^{\circ}$

OR

SR \| PQ
$\angle \mathrm{SRQ}=\angle \mathrm{RQP}=75^{\circ} \quad$ [Alternate angles]
$\angle \mathrm{SRO}=75^{\circ}-15^{\circ}=60^{\circ}$

ANSWER AND SOLUTIONS

SECTION-A

1. Option (3)

0
2. Option (1)

0
3. Option (2)

2
4. Option (1)

3:5
5. Option (2)
$\frac{3}{4}$
6. Option (2)

14 cm
7. Option (3)
$0,-2,2$
8. Option (3)
$\frac{12}{13}$
9. Option (2)
100°
10. Option (3)
$\frac{1}{2}$
11. Option (3)

60 m
12. Option (3)

60
13. Option (1)
$(14,9)$
14. Option (3)

42,21
15. Option (1)
$\frac{15}{2}, 9$
16. Option (2)
-1
17. Option (1)
$\ell+\frac{\frac{\mathrm{N}}{2}-\mathrm{cf}}{\mathrm{f}} \times \mathrm{h}$
18. Option (1)

No real roots
19. Option (3)

Assertion (A) is true but Reason (R) is false.
20. Option (1)

Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).

SECTION-B

21. Savita may have any one of the 365 days of the year as her birthday. Similarly, Hamida may have any one of 365 days of the year as her birthday.
\therefore Total number of ways in which Savita and Hamida may have their birthday $=365 \times 365$
(i) Savita and Hamida may have same birthday on any one of 365 days of the year.
\therefore Number of ways in which Savita and Hamida will have same birthday $=365$
\therefore Probability that Savita and Hamida will have the same birthday $=\frac{365}{365 \times 365}=\frac{1}{365}$
(ii) We have,

Probability that Savita and Hamida will have different birthdays $=1$ - Probability that Savita and Hamida will have the same
birthday $=1-\frac{1}{365}=\frac{364}{365}$
22. Let S_{n} denote the sum of n terms of an A.P. whose nth term is a_{n}.
We have,
$S_{n}=\frac{3 n^{2}}{2}+\frac{5 n}{2}$
$\mathrm{S}_{\mathrm{n}-1}=\frac{3}{2}(\mathrm{n}-1)^{2}+\frac{5}{2}(\mathrm{n}-1)$
[Replacing n by $(\mathrm{n}-1)$]
$\therefore \mathrm{a}_{\mathrm{n}}=\mathrm{S}_{\mathrm{n}}-\mathrm{S}_{\mathrm{n}-1}$
$=\left\{\frac{3 \mathrm{n}^{2}}{2}+\frac{5 \mathrm{n}}{2}\right\}-\left\{\frac{3}{2}(\mathrm{n}-1)^{2}+\frac{5}{2}(\mathrm{n}-1)\right\}$
$\Rightarrow \mathrm{a}_{\mathrm{n}}=\frac{3}{2}\left\{\mathrm{n}^{2}-(\mathrm{n}-1)^{2}\right\}+\frac{5}{2}\{\mathrm{n}-(\mathrm{n}-1)\}$
$\Rightarrow \mathrm{a}_{\mathrm{n}}=\frac{3}{2}(2 \mathrm{n}-1)+\frac{5}{2}$
$\Rightarrow \mathrm{a}_{25}=\frac{3}{2}(2 \times 25-1)+\frac{5}{2}=\frac{3}{2} \times 49+\frac{5}{2}=76$
[Replacing n by 25]

OR

Here, $\mathrm{a}_{1}=-1, \mathrm{a}_{2}=-5$ and $\mathrm{d}=-4$

$$
\begin{array}{ll}
\because & \mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}] \\
\therefore & \mathrm{S}_{16}=\frac{16}{2}[2 \times(-1)+(16-1)(-4)] \\
& =8[-2-60]=8(-62) \\
& =-496
\end{array}
$$

23. LHS : $\frac{\sin ^{4} \theta+\cos ^{4} \theta}{1-2 \sin ^{2} \theta \cos ^{2} \theta}$
$=\frac{\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{2}-2 \sin ^{2} \theta \cos ^{2} \theta}{1-2 \sin ^{2} \theta \cos ^{2} \theta}$
$=\frac{1-2 \sin ^{2} \theta \cos ^{2} \theta}{1-2 \sin ^{2} \theta \cos ^{2} \theta}=1$
$=$ RHS
24. $\therefore \mathrm{ABCD}$ is rectangle
$\Rightarrow \quad x+y=30$
$x-y=14$
Adding (1) and (2) we get
$2 \mathrm{x}=44$
$\mathrm{x}=22$
Subtracting (1) and (2) we get
$2 \mathrm{y}=16$
$y=8$

OR

The given system of equations is
$\mathrm{x}-\mathrm{ky}-2=0$
$3 x+2 y+5=0$
This system of equation is of the form
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$
$\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
where, $\mathrm{a}_{1}=1, \mathrm{~b}_{1}=-\mathrm{k}, \mathrm{c}_{1}=-2$ and
$\mathrm{a}_{2}=3, \mathrm{~b}_{2}=2, \mathrm{c}_{2}=5$
For a unique solution, we must have
$\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}} \neq \frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}$ i.e., $\frac{1}{3} \neq \frac{-\mathrm{k}}{2} \Rightarrow \mathrm{k} \neq \frac{-2}{3}$
25. $\angle \mathrm{PAO}=\angle \mathrm{PBO}=90^{\circ}$ (angle between radius and tangent)
$\angle \mathrm{AOB}=105^{\circ}$
(By angle sum property of a triangle)
$\angle \mathrm{AQB}=\frac{1}{2} \times 105^{\circ}=52.5^{\circ}$
(Angle at the remaining part of the circle is half the angle subtended by the arc at the centre)

SECTION-C

26.

We know that tangent drawn from an external point to a circle are equal.
$\mathrm{AF}=\mathrm{AD}$
$B E=B D$,
$\mathrm{CE}=\mathrm{CF}$
$\mathrm{AB}=\mathrm{AC}$
(Given)
$\mathrm{AD}+\mathrm{BD}=\mathrm{AF}+\mathrm{FC}$
$\Rightarrow \mathrm{BD}=\mathrm{FC}$
$(\therefore \mathrm{AD}=\mathrm{AF})$
$\mathrm{BE}=\mathrm{EC}$
$(\because B D=B E, C E=C F)$
\therefore E bisects BC.

OR

$\mathrm{AC}=8 \mathrm{~cm}$
$\mathrm{AB}=10 \mathrm{~cm}$
and $\mathrm{BC}=12 \mathrm{~cm}$
Let $\mathrm{CF}=\mathrm{x}$
$\mathrm{CF}=\mathrm{EC}=\mathrm{x}$
$\mathrm{AF}=8-\mathrm{x}=\mathrm{AD}$
$\mathrm{BE}=12-\mathrm{x}=\mathrm{BD}$
$\Rightarrow 8-\mathrm{x}+12-\mathrm{x}=10$
$20-2 \mathrm{x}=10$

$-2 \mathrm{x}=-10 \Rightarrow \mathrm{x}=5$
$\mathrm{AD}=3 \mathrm{~cm}$
$\mathrm{BE}=7 \mathrm{~cm}$
and $\mathrm{CF}=5 \mathrm{~cm}$
27. Graph of $2 x+4 y=10$

We have,
$2 x+4 y=10 \Rightarrow 4 y=10-2 x \Rightarrow y=\frac{5-x}{2}$
When $\mathrm{x}=1$, we have
$y=\frac{5-1}{2}=2$
When $\mathrm{x}=3$, we have
$y=\frac{5-3}{2}=1$
Thus, we have the following table :

\mathbf{x}	1	3
\mathbf{y}	2	1

Graph of $3 x+6 y=12$:
We have, $3 x+6 y=12 \Rightarrow 6 y=12-3 x$
$\Rightarrow y=\frac{4-x}{2}$
When $\mathrm{x}=2$, we have
$y=\frac{4-2}{2}=1$
When $\mathrm{x}=0$, we have
$y=\frac{4-0}{2}=2$
Thus, we have the following table :

\mathbf{x}	2	0
\mathbf{y}	1	2

We find the lines represented by equations
$2 x+4 y=10$ and $3 x+6 y=12$ are parallel. So, the two lines have no common point. Hence, the given system of equations has no solution.
28. Let AD be the median through the vertex A of $\triangle \mathrm{ABC}$. Then, D is the mid-point of BC . So, the coordinates of D are $\left(\frac{-3-1}{2}, \frac{-2+8}{2}\right)$ i.e.,(-2, 3).

$$
\begin{aligned}
\therefore \mathrm{AD} & =\sqrt{(5+2)^{2}+(-1-3)^{2}} \\
& =\sqrt{49+16}=\sqrt{65} \text { units }
\end{aligned}
$$

Let G be the centroid of $\triangle \mathrm{ABC}$. Then, G lies on median AD and divides it in the ratio $2: 1$. So, coordinates of G are

$$
\begin{aligned}
& \left(\frac{2 \times-2+1 \times 5}{2+1}, \frac{2 \times 3+1 \times-1}{2+1}\right) \\
& =\left(\frac{-4+5}{3}, \frac{6-1}{3}\right)=\left(\frac{1}{3}, \frac{5}{3}\right)
\end{aligned}
$$

OR

We have,

$$
\begin{aligned}
& S P=\sqrt{\left(a t^{2}-a\right)^{2}+(2 a t-0)^{2}} \\
& =a \sqrt{\left(t^{2}-1\right)^{2}+4 t^{2}}=a\left(t^{2}+1\right) \\
& \text { and } S Q=\sqrt{\left(\frac{a}{t^{2}}-a\right)^{2}+\left(\frac{2 a}{t}-0\right)^{2}} \\
& \Rightarrow S Q=\sqrt{\frac{a^{2}\left(1-t^{2}\right)^{2}}{t^{4}}+\frac{4 a^{2}}{t^{2}}} \\
& \Rightarrow S Q=\frac{a}{t^{2}} \sqrt{\left(1-t^{2}\right)^{2}+4 t^{2}}
\end{aligned}
$$

$=\frac{\mathrm{a}}{\mathrm{t}^{2}} \sqrt{\left(1+\mathrm{t}^{2}\right)^{2}}=\frac{\mathrm{a}}{\mathrm{t}^{2}}\left(1+\mathrm{t}^{2}\right)$
$\therefore \frac{1}{\mathrm{SP}}+\frac{1}{\mathrm{SQ}}=\frac{1}{\mathrm{a}\left(\mathrm{t}^{2}+1\right)}+\frac{\mathrm{t}^{2}}{\mathrm{a}\left(\mathrm{t}^{2}+1\right)}$
$\Rightarrow \frac{1}{\mathrm{SP}}+\frac{1}{\mathrm{SQ}}=\frac{1+\mathrm{t}^{2}}{\mathrm{a}\left(\mathrm{t}^{2}+1\right)}=\frac{1}{\mathrm{a}}$,
which is independent of t.
29. $\mathrm{LHS}=(\operatorname{cosec} \theta+\cot \theta)^{2}$

$$
\begin{aligned}
& \quad=\operatorname{cosec}^{2} \theta+\cot ^{2} \theta+2 \operatorname{cosec} \theta . \cot \theta . \\
& = \\
& =\left(\frac{1}{\sin \theta}\right)^{2}+\left(\frac{\cos \theta}{\sin \theta}\right)^{2}+\frac{2 \times 1}{\sin \theta} \times \frac{\cos \theta}{\sin \theta} \\
& =\frac{1}{\sin ^{2} \theta}+\frac{\cos ^{2} \theta}{\sin ^{2} \theta}+\frac{2 \cos \theta}{\sin ^{2} \theta} \\
& = \\
& =\frac{1+\cos ^{2} \theta+2 \cos \theta}{\sin ^{2} \theta} \\
& =\frac{(1+\cos \theta)^{2}}{\sin \theta} \\
& =\frac{(1+\cos \theta)(1+\cos \theta)}{1-\cos { }^{2} \theta} \\
& = \\
& =\frac{(1+\cos \theta)(1+\cos \theta)}{(1+\cos \theta)(1-\cos \theta)} \\
& =\frac{1+\cos \theta}{1-\cos \theta} \\
& =\frac{\sec \theta+1}{1+\frac{1}{\sec \theta-1}} \\
& =\frac{1}{\sec \theta} \\
& =
\end{aligned}
$$

SECIION-I)

32. \because The tangents drawn to a circle from an external point are equal.
$\therefore \mathrm{AP}=\mathrm{AC}$, Join OC

In $\triangle \mathrm{PAO}$ and $\triangle \mathrm{CAO}$, we have:

$$
\begin{align*}
& \mathrm{AO}=\mathrm{AO} \quad[\text { Common }] \\
& \mathrm{OP}=\mathrm{OC} \quad[\text { Radii of the same circle }] \\
& \mathrm{AP}=\mathrm{AC} \quad[\text { Proved above }] \\
& \Rightarrow \quad \triangle \mathrm{PAO} \cong \triangle \mathrm{AOC} \quad[\mathrm{SSS} \text { congruency }] \\
& \therefore \quad \angle \mathrm{PAO}=\angle \mathrm{CAO} \\
& \Rightarrow \quad \angle \mathrm{PAC}=2 \angle \mathrm{CAO} \quad \ldots(1) \tag{1}
\end{align*}
$$

Similarly $\angle \mathrm{CBQ}=2 \angle \mathrm{CBO}$

Again, we know that sum of internal anngles on the same side of a transversal is 180°.
$\therefore \angle \mathrm{PAC}+\angle \mathrm{CBQ}=180^{\circ}$
$\Rightarrow \quad 2 \angle \mathrm{CAO}+2 \angle \mathrm{CBO}=180^{\circ}$
[From (1) and (2)]
$\Rightarrow \quad \angle \mathrm{CAO}+\angle \mathrm{CBO}=\frac{180^{\circ}}{2}=90^{\circ}$

Also in $\triangle \mathrm{AOB}, \angle \mathrm{BAO}+\angle \mathrm{ABO}+\angle \mathrm{AOB}=180^{\circ}$
[Sum of angles of a triangle]
$\Rightarrow \quad \angle \mathrm{CAO}+\angle \mathrm{CBO}+\angle \mathrm{AOB}=180^{\circ} \quad[\mathrm{By}(3)]$
$\Rightarrow 90^{\circ}+\angle \mathrm{AOB}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{AOB}=180^{\circ}-90^{\circ}$
$\Rightarrow \quad \angle \mathrm{AOB}=90^{\circ}$.

Therefore, $\sqrt{\mathrm{p}}$ is irrational.

OR

Let AD be the height (h) of the light house and $B C$ is the distance between the ships and DC $=x$ (let)

Given, $\mathrm{BC}=100 \mathrm{~m}$
$\tan 45^{\circ}=\frac{\mathrm{h}}{\mathrm{x}}$
$\Rightarrow \mathrm{x}=\mathrm{h}$

In $\triangle \mathrm{ABD}, \tan 30^{\circ}=\frac{\mathrm{h}}{100-\mathrm{DC}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{h}}{100-\mathrm{x}}$
$\therefore 100-\mathrm{x}=\mathrm{h} \sqrt{3}$
$100-\mathrm{h}=\mathrm{h} \sqrt{3}$
$100-\mathrm{h}=\mathrm{h} \sqrt{3}$
$\Rightarrow 100=\mathrm{h}+\mathrm{h} \sqrt{3} \quad[\mathrm{By}(\mathrm{i})]$
$\Rightarrow 100=\mathrm{h}(1+\sqrt{3})$
$h=\frac{100}{1+\sqrt{3}}$
$\Rightarrow \mathrm{h}=\frac{100(\sqrt{3}-1)}{3-1}$
$=50(\sqrt{3}-1)$
$=50(1.732-1)$
$=50 \times 0.732$
\therefore Height of tower $=36.6 \mathrm{~m}$
34. We have,

Volume of ice-cream in the container shaped like a right circular cylinder having radius 6 cm and height $15 \mathrm{~cm}=\pi \times 6^{2} \times 15 \mathrm{~cm}^{3}$

Volume of one ice-cream cone shown in figure
$=\left\{\frac{2}{3} \pi \times 3^{3}+\frac{1}{3} \pi \times 3^{2} \times 12\right\} \mathrm{cm}^{2}$
$=(18 \pi+36 \pi) \mathrm{cm}^{3}=54 \pi \mathrm{~cm}^{3}$
Let the total number of cones that can be filled with the ice-cream given in the container be n. Then,

Volume of ice-cream in n cones $=$ Volume of ice-cream in the container
$\Rightarrow 54 \pi \times \mathrm{n}=\pi \times 36 \times 15$
$\Rightarrow \mathrm{n}=\frac{\pi \times 36 \times 15}{54 \pi}=10$
35. The frequency distribution table of the given data can be drawn as :

Class	x_{i}	f_{i}	$\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$	cf
$0-50$	25	2	50	2
$50-100$	75	3	225	5
$100-150$	125	5	625	10
$150-200$	175	6	1050	16
$200-250$	225	5	1125	21
$250-300$	275	3	825	24
$300-350$	325	1	325	25
		$\sum \mathrm{f}_{\mathrm{i}}=25$	$\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$ $=4225$	

Mean $=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{4225}{25}=169$

Median $=\ell+\left[\frac{\frac{\mathrm{n}}{2}-\mathrm{cf}}{\mathrm{f}}\right] \times \mathrm{h}$

Since, $\frac{\sum \mathrm{f}_{\mathrm{i}}}{2}=\frac{\mathrm{n}}{2}=\frac{25}{2}=12.5$. This observation
lies in the class $150-200$.
\therefore Lower limit of median class $(\ell)=150$

Class size $(\mathrm{h})=50$

Cumulative frequency (cf) $=10$

Frequency of median class $(\mathrm{f})=6$
\therefore Median $=150+\left[\frac{\frac{25}{2}-10}{6}\right] \times 50=150+\left[\frac{2.5}{6}\right] \times 50$
$=150+20.83=170.83$

Mode $=3$ Median -2 Mean
$=3(170.83)-2(169)=512.49-338=174.49$

OR

C.I.	$\mathbf{f}_{\mathbf{i}}$	c.f.	$\mathbf{x}_{\mathbf{i}}$	$\mathbf{u}_{\mathbf{i}}=\frac{\mathbf{x}_{\mathbf{i}}-\mathbf{a}}{\mathbf{h}}$	$\mathbf{f}_{\mathbf{i}} \mathbf{u}_{\mathbf{i}}$
$05-07$	70	70	6	-3	-210
$07-09$	120	190	8	-2	-240
$09-11$	32	222	10	-1	-32
$11-13$	100	322	12	0	0
$13-15$	45	367	14	1	45
$15-17$	28	395	16	2	56
$17-19$	5	400	18	3	15
	$\sum \mathrm{f}=400$				$\sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=-366$

$\mathrm{a}=$ Assumed mean $=12$

Mean, $\bar{x}=a+\frac{\sum f_{i} u_{i}}{\sum f_{i}} \times h$

Mean $=12+\frac{-366}{400} \times 2=10.17$
$\frac{\sum \mathrm{f}}{2}=200 \Rightarrow$ Median class $=09-11$

Median $=\ell+\left(\frac{\frac{\mathrm{n}}{2}-\text { c.f. }}{\mathrm{f}}\right) \times \mathrm{h}$
\Rightarrow Median $=9+\frac{200-190}{32} \times 2=9.625$

SECTION-E

36.

(i) $\frac{\text { Capacity of sump }}{\text { Capacity of tank }}=\frac{\ell \text { bh }}{\pi r^{2} \mathrm{H}}$
$=\frac{1.57 \times 1.44 \times 0.95}{3.14 \times 0.6 \times 0.6 \times 0.95}=\frac{2}{1}$
(ii) C.S.A. of cylindrical tank $=2 \pi \mathrm{rH}$
$=2 \times 3.14 \times 60 \times 95$
$=35796 \mathrm{~cm}^{2}$
$=3.5796 \mathrm{~m}^{2}$
$=3.6 \mathrm{~m}^{2}$
(iii) Volume of water in cylindrical tank
$=\pi \mathrm{r}^{2} \mathrm{~h}$
$=3.14 \times 60 \times 60 \times 95$
$=1073880 \mathrm{~cm}^{3}$
Now, $1 \ell=1000 \mathrm{~cm}^{3}$
\therefore Volume of tank $=1073.88 \ell$
20ℓ tank is filled in 1 minute
$\therefore 1073.88 \ell \operatorname{tank}$ is filled in $\frac{1073.88 \ell}{20}$
$=53.69$
$=54$ minutes

OR

Volume of water in sump $=1500$ litres
$=1500$ litres
$=1.5 \mathrm{~m}^{3}$
Then, $\mathrm{V}=\ell \mathrm{bh}$
$1.57 \times 1.44 \times \mathrm{h}=1.5$
$h=\frac{1.5}{1.57 \times 1.44}=0.663 \mathrm{~m}$
$=66.3 \mathrm{~cm}$
37. (i) Suppose two cars meet at point Q .

Then, Distance travelled by car $\mathrm{X}=\mathrm{AQ}$.
Distance travelled by car $\mathrm{Y}=\mathrm{BQ}$.
It is given that two cars meet in 9 hours
Distance travelled by car X in 9 hours
$=9 \mathrm{xkm}=\mathrm{AQ}=9 \mathrm{x}$
Distance travelled by car Y in 9 hours
$=9 \mathrm{ykm}=\mathrm{BQ}=9 \mathrm{y}$

Clearly, $\mathrm{AQ}-\mathrm{BQ}=\mathrm{AB}$
$\Rightarrow 9 \mathrm{x}-9 \mathrm{y}=90$
$\Rightarrow \mathrm{x}-\mathrm{y}=10$

OR

Suppose two cars meet at point P .
Then Distance travelled by car $\mathrm{X}=\mathrm{AP}$ and Distance travelled by car $\mathrm{Y}=\mathrm{BP}$.

In this case, two cars meet in $\frac{9}{7}$ hours
$=\frac{9}{7} \mathrm{xkm}$
$\Rightarrow \mathrm{AP}=\frac{9}{7} \mathrm{x}$

Distance travelled by car Y in $\frac{9}{7}$ hours
$=\frac{9}{7} y \mathrm{~km}$
Clearly, $\mathrm{AP}+\mathrm{BP}=\mathrm{AB}$
$\Rightarrow \frac{9}{7} x+\frac{9}{7} y=90$
$\Rightarrow \frac{9}{7}(x+y)=90$
$\Rightarrow \mathrm{x}+\mathrm{y}=70$
(ii) We have $\mathrm{x}-\mathrm{y}=10$
$\Rightarrow \mathrm{x}+\mathrm{y}=70$
Adding equations (i) and (ii), we get
$2 \mathrm{x}=80$
$\Rightarrow \mathrm{x}=40$
Hence, speed of car X is $40 \mathrm{~km} / \mathrm{hr}$.
(iii) We have $\mathrm{x}-\mathrm{y}=10$
$\Rightarrow 40-\mathrm{y}=10$
$\Rightarrow \mathrm{y}=30$
Hence, speed of car Y is $30 \mathrm{~km} / \mathrm{hr}$
38. (i) Scale factor $=\frac{\mathrm{AC}}{\mathrm{AE}}$
$=\frac{\mathrm{AC}}{\mathrm{AC}+\mathrm{CE}}=\frac{8}{8+4}$
$=\frac{8}{12}=\frac{2}{3}$
(ii) Since, $\triangle \mathrm{EBC} \sim \triangle \mathrm{EFA}$

$$
\begin{aligned}
& \frac{\mathrm{EC}}{\mathrm{EA}}=\frac{\mathrm{BC}}{\mathrm{AF}} \\
& \Rightarrow \frac{4}{12}=\frac{3.6}{\mathrm{AF}} \\
& \Rightarrow \mathrm{AF}=3.6 \times 3 \\
& =10.8 \mathrm{~cm}
\end{aligned}
$$

(iii) $\triangle \mathrm{ABC} \sim \triangle \mathrm{ADE}$

$$
\begin{aligned}
& \frac{\mathrm{AC}}{\mathrm{AE}}=\frac{\mathrm{BC}}{\mathrm{DE}} \\
& \frac{8}{12}=\frac{3.6}{\mathrm{DE}} \\
& \mathrm{DE}=\frac{3.6 \times 3}{2}=5.4 \mathrm{~cm}
\end{aligned}
$$

OR

$$
\begin{aligned}
& \frac{\mathrm{AB}}{\mathrm{BD}}=\frac{\mathrm{AC}}{\mathrm{CE}} \\
& \frac{\mathrm{AB}}{\mathrm{BD}}=\frac{8}{4} \\
& \frac{\mathrm{AB}}{\mathrm{BD}}=\frac{2}{1}
\end{aligned}
$$

