

MATHEMATICS

Nour Hard Work Leads to Strong Foundation

 $\frac{3}{5} = \frac{XY}{3}$

MATHEMATICS

 $XY = \frac{3 \times 3}{5} = \frac{9}{5}$ XY = 1.8 cm(a) $\sin\theta + \cos\theta = \sqrt{3}$ squaring both sides $(\sin\theta + \cos\theta)^2 = (\sqrt{3})^2$ $\sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta = 3$ $1 + 2\sin\theta\cos\theta = 3 \quad {\sin^2\theta + \cos^2\theta = 1}$ $2\sin\theta\cos\theta = 3 - 1$ $2\sin\theta\cos\theta = 2$ $\sin\theta.\cos\theta = 1$ OR

(b) If
$$\sin \alpha = \frac{1}{\sqrt{2}}$$
 and $\cot \beta = \sqrt{3}$

$$\csc \alpha = \frac{1}{\sin \alpha} = \frac{1}{\left(\frac{1}{\sqrt{2}}\right)} = \sqrt{2}$$

$$\csc^{2}\beta = 1 + \cot^{2}\beta$$

 $\csc^{2}\beta = 1 + (\sqrt{3})^{2}$
 $\csc^{2}\beta = 1 + 3$
 $\csc\beta = \sqrt{4}$
 $\csc\beta = 2$
So, $\csc\alpha + \csc\beta = \sqrt{2} + 2$

24. Greatest number which divides 85 and 72 leaving remainders 1 and 2 respectively will be HCF of 84(85 - 1 = 84) and 70(72 - 2 = 70)HCF of 70 and 84 = 14

CLASS - X STANDARD (CBSE PAPER)

MATHEMATICS

25. Number of Red Ball = 4 Balls Number of Blue Ball = 3 Balls

Number of Yellow Ball = 2 Balls

- Total number of Balls = 9 Ball
- (i) Probability of drawing Red ball

 $= \frac{\text{Number of Red balls}}{\text{Total number of balls}} = \frac{4}{9}$

(ii) Probability of drawing Yellow ball

 $= \frac{\text{Number of Yellow balls}}{\text{Total number of balls}} = \frac{2}{9}$

SECTION-C

26. Let the two numbers be x and y such that x > yAccording to problem

 $\frac{1}{2}(x - y) = 2$ $\Rightarrow x - y = 4$ (1) Also, x + 2y = 13(2) Subtract (1) from (2)

$$x + 2y = 13$$

$$y = -3$$

$$y = -3$$

$$y = -3$$

$$y = 3$$

$$x - 3 = 4$$

$$x = 7$$
Thus, number are 7 and 3.

27. Let $\sqrt{5}$ is a rational number

$$\sqrt{5} = \frac{p}{q}$$
 [p and q are co-prime]

Squaring both sides

 $5 = \frac{p^2}{q^2}$ $5q^2 = p^2 \qquad \dots(1)$ 5 divides p^2

5 divides p also

So,
$$p = 5r$$

Put $p = 5r$ in (1)
 $5q^2 = (5r)^2$
 $5q^2 = 25r^2$
 $q^2 = 5r^2$
5 divides q^2
5 divides q.

But p and q are mutually co-prime which is a constradiction, hence our assumption is wrong

 $\sqrt{5}$ is irrational number.

AB = 10 cm

$$\Delta$$
ABC is equilateral triangle
So, AC = BC = 10 cm
In Δ ACO
By pythagoras theorem
AC² = AO² + OC²
(10)² = (5)² + OC²
OC² = 100 - 25 = 75
OC = $\sqrt{75} = 5\sqrt{3}$ cm
OC = 5 × 1.7 = 8.5 cm
Coordinates of third vertex C = (0, -5.5)

(a)

29.

PRE-NURTURE & CAREER FOUNDATION DIVISION

MATHEMATICS

In circle with centre O

 $\angle TPO = 90^{\circ}$

(Angle between tangent and radius at point of contact is 90°)

 $\angle TQO = 90^{\circ}$

(Angle between tangent and radius at point of contact is 90°)

In quadrilateral POQT

 $\angle POQ + \angle OQT + \angle QTP + \angle TPO = 360^{\circ}$

(Angle sum property of quadrilateral)

$$\angle POO + 90^{\circ} + \angle OTP + 90^{\circ} = 360^{\circ}$$

$$\angle POQ + \angle QTP = 360^\circ - 90^\circ - 90^\circ$$

 $\angle POQ + \angle QTP = 180^{\circ}$...(1)

In $\triangle POR$

 $\angle POQ + \angle OPQ + \angle OQP = 180^{\circ}$

(Angle sum property of triangle)

 $\angle OPQ = \angle OQP$

(Angle opposite to equal radii)

 $\angle POQ + 2\angle OPQ = 180^{\circ}$ (2)

From (1) and (2)

 $\angle POQ + \angle PTQ = \angle POQ + 2\angle OPQ$

 $\angle PTQ = 2 \angle OPQ$

Hence proved

In quadrilateral ABCD

 $\angle B = 90^{\circ}$

AD = 17 cm (given)

DS = 3 cm (given)

DS = DR

(Length of tangent from external point to circle are equal)

So, DR = 3 cm

Now, AR = AD - DR = 17 - 3 = 14 cm

AR = AQ

(Length of tangent from external point to circle are equal)

BQ = AB - AQ

BQ = 20 - 14 = 6 cm

In quadrilateral BQOP

$$\angle POQ + \angle BQO + \angle BPO + \angle PBQ = 360^{\circ}$$

(Angle sum property)

 $\angle POQ + 90^{\circ} + 90^{\circ} + 90^{\circ} = 360^{\circ}$ $\angle POQ = 360^{\circ} - 90^{\circ} - 90^{\circ} - 90^{\circ}$ $\angle POQ = 90^{\circ}$ Also OP = OQ = r(Radii of circle)

Hence, PBQO is a square

BQ = r = 6 cm

CLASS - X STANDARD (CBSE PAPER)

MATHEMATICS

30.
$$\frac{\tan \theta + \sec \theta - 1}{\tan \theta - \sec \theta + 1} = \frac{1 + \sin \theta}{\cos \theta}$$

$$LHS = \frac{\tan \theta + \sec \theta - (\sec^2 \theta - \tan^2 \theta)}{(\tan \theta - \sec \theta + 1)}$$

$$= \frac{(\tan \theta + \sec \theta) - (\sec \theta + \tan \theta)(\sec \theta - \tan \theta)}{(\tan \theta - \sec \theta + 1)}$$

$$= \frac{(\sec \theta + \tan \theta)[1 - \sec \theta + \tan \theta]}{[\tan \theta - \sec \theta + 1]}$$

$$= (\sec \theta + \tan \theta)$$

$$= (\sec \theta + \tan \theta)$$

$$= \frac{1}{\cos \theta} + \frac{\sin \theta}{\cos \theta}$$

$$= \left(\frac{1 + \sin \theta}{\cos \theta}\right) = RHS$$
Hence proved
31. (a) $r = \frac{1}{2} \times h = \frac{h}{2}$
Volume of air in room
$$= Volume of Hemisphere$$

$$+ Volume of Cylinder$$

$$= \frac{1408}{21} = \frac{2}{3}\pi x^3 + \pi x^2h$$

$$= \frac{2}{3}\pi \times \left(\frac{h}{2}\right)^3 + \pi \left(\frac{h}{2}\right)^2 h$$

$$= \frac{1408}{21} = \frac{2}{3}\pi \times \frac{h^3}{8} + \pi \frac{h^3}{4}$$

$$= \pi \frac{h^2}{21} \left\{\frac{2}{3} \times \frac{h}{2} + h\right\}$$
Unuar Unrule Leads to Se

$$= \pi \frac{h^{2}}{4} \times \frac{4h}{3}$$

$$\frac{1408}{21} = \frac{22}{7} \times \frac{4}{4} \times \frac{h^{3}}{3}$$

$$h^{3} = \frac{1408}{22} = 64$$

$$h = 4 \text{ m}$$
OR
$$\int \frac{1}{6} \times \left\{ \frac{1}{3} \pi r^{2} h \right\}$$

$$r = 3 \text{ cm}$$

$$h = 12 \text{ cm}$$
Required volume of icecream
$$= \frac{2}{3} \pi r^{3} + \left\{ \frac{\pi r^{2} h}{3} - \frac{1}{6} \times \frac{\pi r^{2} h}{3} \right\}$$

$$= \frac{2}{3} \pi r^{3} + \frac{\pi r^{2} h}{3} \left\{ 1 - \frac{1}{6} \right\}$$

$$= \frac{2}{3} \pi r^{3} + \frac{5}{6} \times \frac{\pi r^{2} h}{3}$$

$$= \frac{1}{3}\pi r^{2} \left\{ 2r + \frac{5}{6} \times h \right\}$$
$$= \frac{1}{3} \times \frac{22}{7} \times 9 \left\{ 2 \times 3 + \frac{5}{6} \times 12 \right\}$$

$$= \frac{1}{3} \times \frac{22}{7} \times 9(6+10)$$

$$= \frac{66}{7} \times 16 \text{ cm}^3 = \frac{1056}{7}$$
$$= 150.85 \text{ cm}^3$$

33.

MATHEMATICS

SECTION-D

32.

Given : In $\triangle ABC$, DE || BC To prove : $\frac{AD}{DB} = \frac{AE}{EC}$

Proof : Construction Join D to C and B to E Draw DG \perp AC, EF \perp AB

Area of $\triangle ADE = \frac{1}{2} \times AD \times EF \{\frac{1}{2} \times Base \times Height\}$

Area of $\triangle BDE = \frac{1}{2} \times BD \times EF$

Area of $\triangle ADE = \frac{1}{2} \times AE \times DG$

Area of $\triangle DEC = \frac{1}{2} \times EC \times DG$

$$\frac{\operatorname{Ar} \Delta \operatorname{ADE}}{\operatorname{Ar} \Delta \operatorname{BDE}} = \frac{\frac{1}{2} \times \operatorname{AD} \times \operatorname{EF}}{\frac{1}{2} \times \operatorname{BD} \times \operatorname{EF}} = \frac{\operatorname{AD}}{\operatorname{BD}} \qquad \dots (1)$$

$$\frac{\operatorname{Ar} \Delta \operatorname{ADE}}{\operatorname{Ar} \Delta \operatorname{DEC}} = \frac{\frac{1}{2} \times \operatorname{AE} \times \operatorname{DG}}{\frac{1}{2} \times \operatorname{EC} \times \operatorname{DG}} = \frac{\operatorname{AE}}{\operatorname{EC}} \qquad \dots (2)$$

We known that triangles on same base and between same parallels are equal in area.

 $Ar(\Delta BDE) = Ar(\Delta DEC)$

Hence from (1) and (2)

 $\frac{AD}{BD} = \frac{AE}{EC}$

Hence proved

6

Length of wire attached to the tops of both towers = 16 m

34.

CLASS - X STANDARD (CBSE PAPER)

MATHEMATICS

VERSEAS	
In $\triangle OCA$ and $\triangle ODA$	
OC = OD (Radii of same circle)	
AO = AO (Common)	
AC = AD (Length of tangent from outside point circle are equal)	
By SSS property	
$\Delta OCA \cong \Delta ODA$	
So, $\angle OAD = \angle OAC = 30^{\circ}$ (Half of 60°)	
So, ΔABO	
$\sin 45^\circ = \frac{h}{OA}$ (OB = h (let))	
$\frac{1}{\sqrt{2}} = \frac{h}{OA}$	
$\sqrt{2}h = OA$ (1)	
In $\triangle OAD$	
$\sin 30^\circ = \frac{r}{OA}$	
$OA = \frac{r}{\sin 30^{\circ}} = \frac{r}{\left(\frac{1}{2}\right)}$	
OA = 2r(2)	
from (1) and (2)	
$\sqrt{2}h = 2r$	
$h = \sqrt{2}r$	35.
Height of centre of Balloon is $\sqrt{2}$ times its radius.	
Hence proved	
In ΔAOB	
\Rightarrow OA = OB (Radii of same circle)	
$\angle OAB = \angle OBA$	
Let $\angle OAB = \angle OBA = x$	
So, $x + x + 60^{\circ} = 180^{\circ}$	
$2\mathbf{x} = 120^{\circ}$	
$\Rightarrow x = 60^{\circ}$	

 $\angle AOB = 60^{\circ}$ Area of minor segment AB =Area of sector AOB – Area of $\triangle AOB$ $=\frac{\theta}{360^{\circ}}\times\pi r^2-\frac{\sqrt{3}}{4}\times(14)^2$ $=\frac{60^{\circ}}{360^{\circ}}\times\frac{22}{7}\times(14)^{2}-\frac{\sqrt{3}}{4}\times(14)^{2}$ = 102.66 - 84.86 $= 17.8 \text{ cm}^2$ Area of major segment = Area of circle - Area of minor segment. $= \pi r^2 - \frac{\theta}{360^\circ} \times \pi r^2$ $= \pi r^2 \left(1 - \frac{60^\circ}{360^\circ} \right)$ $=\frac{22}{7}\times\frac{5}{6}\times14\times14$ $= 513.33 \text{ cm}^2$ (a) Let first term of AP = aand common difference = dAccording to problem $\frac{a_{11}}{a_{17}} = \frac{a+10d}{a+16d} = \frac{3}{4}$ 4(a + 10d) = 3(a + 16d)

4a + 40d = 3a + 48d

4a - 3a = 48d - 40d

a = 8d

Your Hard Work Leads to Strong Joundation

 ΔOAB is an equilateral Δ

7

....(1)

MATHEMATICS

Required ratio =
$$\frac{a_5}{a_{21}} = \frac{a+4d}{a+20d}$$

= $\frac{8d+4d}{8d+20d}$
= $\frac{12d}{28d} = \frac{63}{14} = \frac{3}{7}$

Ratio of sum of first 5 forms to sum of first 21 terms.

$$\frac{S_5}{S_{21}} = \frac{\frac{5}{2}[2a+4d]}{\frac{21}{2}[2a+20d]}$$
$$= \frac{5}{21} \times \frac{[2(8d)+4d]}{[2(8d)+20d]}$$
$$= \frac{5}{21} \times \frac{20d}{36d}$$
$$= \frac{5}{21} \times \frac{5}{9}$$
$$= \frac{25}{189}$$

OR

(b) Total number of wooden logs = 250
a = number of wooden logs in bottom row = 22
Similarly
a₂ = 21
a₃ = 20
Number of wooden logs in consecutive
rows is
22, 21, 20,n terms
a = 22
d = 21 - 22 = -1
S_n = 250
S_n =
$$\frac{n}{2}[2a + (n - 1)d]$$

= $\frac{n}{2}[2(22) + (n - 1)(-1)] = 250$

$$\frac{n}{2}[44 - n + 1] = 250$$

$$\frac{n}{2}(45 - n) = 250$$

$$45n - n^{2} = 500$$

$$n^{2} - 45n + 500 = 0$$

$$n^{2} - 25n - 20n + 500 = 0$$

$$n(n - 25) - 20(n - 25) = 0$$

$$(n - 25)(n - 20) = 0$$

$$n = 20, n = 25$$

$$a_{n} = a_{20} = a + 19d$$

$$= 22 + 19(-1)$$

$$= 22 - 19$$

$$= 3$$

There are 3 wooden logs in last 20^{th} row such that total number of wooden logs is 250.

SECTION-E

36. (i) Length of photo = 18 cm Breadth of photo = 12 cm According to problem $(18 + x)(12 + x) = (18 \times 12) \times 2$ $18 \times 12 + 12x + 18x + x^2 = 18 \times 12 \times 2$ $x^2 + 30x = 18 \times 12$ $x^2 + 30x - 216 = 0$ (ii) Required standard form of quadratic equation is

$$1.x^2 + 30.x + (-216) = 0$$

(iii)
$$x^2 + 30x - 216 = 0$$

 $x^2 + 36x - 6x - 216 = 0$
 $x(x + 36) - 6(x + 36) = 0$
 $(x - 6)(x + 36) = 0$
 $x = 6, x = -36$
New length = $18 + 6 = 24$ cm
Breadth = $12 + 6 = 18$ cm

CLASS - X STANDARD (CBSE PAPER)

MATHEMATICS

OR

(18 + x)(12 + x) = 220 $216 + 30x + x^2 = 220$ $x^2 + 30x - 4 = 0$ $D = b^2 - 4ac = 900 + 16 = 916$ As D is not perfect square \Rightarrow For no rational value of x area is 220 cm².

37.

_		
Rain fall	Number of sub.division	c.f.
200-400	2	2
400-600	4	6
600-800	7	13
800-1000	4	17
1000-1200	2	19
1200-1400	3	22
1400-1600	1	23
1600-1800	1	24

(i) Highest frequency is 7 of class interval600 - 800 so the modal class is 600 - 800

(ii)
$$\frac{N}{2} = \frac{24}{2} = 12$$

Median class = 600 - 800
Median = $\ell + \frac{\frac{N}{2} - c.f.}{f} \times h$
= 600 + $\frac{12-6}{7} \times 200$
= 600 + $\frac{6}{7} \times 200$
= 600 + $\frac{1200}{7}$

Rain fall	Number of	Xi	f _i x _i
	sub.division	_	
200-400	2	300	600
400-600	4	500	2000
600-800	7	700	4900
800-1000	4	900	3600
1000-1200	2	1100	2200
1200-1400	3	1300	3900
1400-1600	1	1500	1500
1600-1800	1	1700	1700
	24	$\sum f_i x_i$	= 20,400

$$\overline{\mathbf{x}} = \frac{\sum \mathbf{f}_i \mathbf{x}_i}{\sum \mathbf{f}_i} = \frac{20,400}{24}$$

 $\overline{x} = 850$

(iii) Number of sub-division with good rainfall more than 1000 mm is 7(2 + 3 + 1 + 1)

In $\triangle AOB$, $\angle ABO = 30^{\circ}$ (given)

$$OA = 75 \text{ cm}$$
 (given)

 $\angle OAB = 90^{\circ}$

(b)

(c)

(Angle between tangent and radius)

$$\tan 30^{\circ} = \frac{OA}{AB}$$

$$\frac{1}{\sqrt{3}} = \frac{75}{AB}$$

$$AB = 75\sqrt{3} \text{ cm}$$

$$In \Delta OAB$$

$$\sin 30^{\circ} = \frac{OA}{OB} = \frac{75}{OB}$$

$$OB = 150 \text{ cm}$$

$$OQ = 75 \text{ cm} \qquad \text{(Radius of circle)}$$

$$In \Delta AOB$$

$$\frac{75}{BQ + 75} = \sin 30^{\circ}$$

$$75 = \frac{1}{2} \times (BQ + 75)$$

150 = BQ + 75

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

12 cm

MATHEMATICS

MATHEMATICS

SAMPLE PAPER #

CLASS - X STANDARD (CBSE SAMPLE PAPER) ANSWER AND SOLUTIONS 16. Option (2) **SECTION-A** 2r Option (1) 17. Option (2) 165 2:3Option (3) 18. Option (3) 20 Option (1) ± 3 All real values except 10 19. Option (2) Option (4) Both Assertion (A) and Reason (R) are true but Not defined Reason (R) is not the correct explanation of Option (2) Assertion (A). 1220. Option (3) Option (3) Assertion (A) is true but Reason (R) is false. 11 36 **SECTION-B** Option (4) IV quadrant 110, 120, 130,, 990 21. Option (3) $a_n = 990$ 4 Option (1) $\Rightarrow 110 + (n-1) \times 10 = 990$ -12∴ n = 89 Option (2) 22. D R $\pi r(\ell + 2h + r)$ Option (4) Ο 4 Option (1) р B 14, 38 AP = AS, BP = BQ, CR = CQ and DR = DSOption (3) \Rightarrow AP + BP + CR + DR = AS + BQ + CQ + DS $\frac{3}{11}$ \Rightarrow AB + CD = AD + CB Option (2) But AB = CD and AD = CB5 $\therefore AB = AD$ Option (3)

Hence, ABCD is a square.

MATHEMATICS

OR

23. D F F

 $\triangle ADE \sim \triangle GBD$ and $\triangle ADE \sim \triangle FEC$ $\Rightarrow \triangle GBD \sim \triangle FEC$ (AA Criterion)

$$\Rightarrow \frac{GD}{FC} = \frac{GB}{FE} \Rightarrow GD \times FE = GB \times FC$$

or FG² = BG × FC [:: GD = FE = FG]

or $FG^2 = BG \times FC$ [:: GD = IHence proved

24. Capacity of first glass = $\pi r^2 H - \frac{2}{3}\pi r^3$ = $\pi \times 9 (10 - 2) = 72\pi cm^3$

> Capacity of second glass = $\pi r^2 H - \frac{1}{3}\pi r^2 h$ = $\pi \times 3 \times 3 (10 - 0.5) = 85.5\pi cm^3$ \therefore Suresh got more quantity of juice. Extra amount = 13.5 πcm^3

25. For Jayanti, Favourable outcome is (6, 6) i.e, 1

Probability (getting the number 36) = $\frac{1}{36}$ For Pihu,

Favourable outcome is 6 i.e, 1

Probability (getting the number 36) = $\frac{1}{6}$

... Pihu has the better chance.

OR

Total number of integers = 29

- (i) Prob. (Prime number) = $\frac{6}{29}$
- (ii) Prob. (Number divisible by 7) = $\frac{4}{20}$

SECTION-C

26. Let us assume to the contrary, that $2\sqrt{5} - 3$ is a rational number

$$\therefore 2\sqrt{5} - 3 = \frac{p}{q}$$
, where p and q are integers

and coprime and $q \neq 0$

$$\Rightarrow \sqrt{5} = \frac{p+3q}{2q} \qquad \dots (1)$$

Since p and q are integers $\therefore \frac{p+3q}{2q}$ is a rational number.

 $\therefore \sqrt{5}$ is a rational number which is a contradiction as $\sqrt{5}$ is an irrational number. Hence our assumption is wrong and hence $2\sqrt{5}-3$ is an irrational number.

OR

$$144 = 2 × 2 × 2 × 2 × 3 × 3$$

$$180 = 2 × 2 × 3 × 3 × 5$$

HCF = 2 × 2 × 3 × 3 = 36

$$13m - 16 = 36$$

$$13m = 52$$

m = 4
x + y = 7 and 2(x - y) + x + y + 5 + 5 = 27
∴ x + y = 7 and 3x - y = 17
Solving, we get, x = 6 and y = 1

28. (i) A(1, 7), B(4, 2), C(-4, 4)
Distance travelled by Seema =
$$\sqrt{34}$$
 units

- Distance travelled by Aditya = $\sqrt{68}$ units
- : Aditya travels more distance
- (ii) Coordinate of D are

$$\left(\frac{1+4}{2}, \frac{7+2}{2}\right) = \left(\frac{5}{2}, \frac{9}{2}\right)$$

27.

MATHEMATICS

29. $\sin\theta + \cos\theta = \sqrt{3} \implies (\sin\theta + \cos\theta)^2 = 3$ $\implies 1 + 2 \sin\theta \cos\theta = 3 \implies \sin\theta \cos\theta = 1$

$$\therefore \tan \theta + \cot \theta = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = 1$$

Hence proved

30. Required Area = Area of triangle - Area of 3 sectors

Area of Triangle =
$$\frac{1}{2} \times 24 \times 7 = 84 \text{ m}^2$$

Area of three sectors

$$= \frac{\pi r^2}{360^\circ} \times (\text{sum of three angles of triangle})$$

$$= \frac{22 \times 7 \times 7 \times 180^{\circ}}{7 \times 2 \times 2 \times 360^{\circ}} = \frac{77}{4} \text{ or } 19.25 \text{ m}^2$$

$$\therefore \text{ Required Area} = \frac{259}{4} \text{ or } 64.75 \text{ m}^2$$

OR

Quantity of water flowing through pipe in 1 hour

$$= \pi \times \frac{7}{100} \times \frac{7}{100} \times 15000 \mathrm{m}^3$$

Required time

$$= \left(50 \times 44 \times \frac{21}{100}\right) \div (\pi \times \frac{7}{100} \times \frac{7}{100} \times 15000)$$

= 2 hours

31. LHS:
$$\frac{\frac{\sin^3 \theta}{\cos^3 \theta}}{1 + \frac{\sin^2 \theta}{\cos^2 \theta}} + \frac{\frac{\cos^3 \theta}{\sin^3 \theta}}{1 + \frac{\cos^2 \theta}{\sin^2 \theta}}$$

$$= \frac{\sin^{3} \theta}{\cos \theta} + \frac{\cos^{3} \theta}{\sin \theta}$$
$$= \frac{\sin^{4} \theta + \cos^{4} \theta}{\cos \theta \sin \theta}$$
$$= \frac{(\sin^{2} \theta + \cos^{2} \theta)^{2} - 2\sin^{2} \theta \cos^{2} \theta}{\cos \theta \sin \theta}$$
$$= \frac{1 - 2\sin^{2} \theta \cos^{2} \theta}{\cos \theta \sin \theta}$$
$$= \frac{1 - 2\sin^{2} \theta \cos^{2} \theta}{\cos \theta \sin \theta}$$
$$= \sec \theta \cos \theta - 2\sin \theta \cos \theta$$
$$= RHS$$

32. Given : A \triangle ABC in which line ℓ parallel to BC (DE||BC) intersecting AB at D and AC at E.

| SECTION-D |

To prove :
$$\frac{AD}{DB} = \frac{AE}{EC}$$

Construction : Join D to C and E to B. Through E draw EF perpendicular to AB i.e., $EF \perp AB$ and through D draw DG $\perp AC$.

Proof :

Area of
$$(\triangle ADE) = \frac{1}{2}(AD \times EF)$$
 ...(1)

(Area of $\Delta = \frac{1}{2}$ base × altitude)

Area of (
$$\triangle BDE$$
) = $\frac{1}{2}$ (BD × EF) ...(2)

Your Hard Work Leads to Strong Foundation

 $\frac{x-2-x}{x(x-2)} = \frac{3}{1}$

220-240

Total

MATHEMATICS

Here, a = 170

Mean daily wages =
$$170 + \frac{1}{110} \times 20 = ₹170.19$$

(approx.)

Mode = 160 + $\frac{22 - 20}{44 - 20 - 18}$ × 20 = ₹166.67

(approx.)

OR

Re-writing the distribution in the form of the grouped distribution with each class interval as 10 and taking assumed mean to be 55, we get the following table.

Class	Mid-value	$d_i = x_i - A$	d,	Number of	f _i u _i
	$\left(x_i = \frac{\ell + u}{2}\right)$	(A = 55)	$u_i = \frac{h}{h}$	students (f_i)	
0 - 10	5	-50	-5	12	-60
10 – 20	15	-40	-4	10	-40
20 - 30	25	-30	-3	13	-39
30 - 40	35	-20	-2	15	-30
40 - 50	45	-10	-1	20	-20
50 - 60	55 = A	0	0	16	0
60 – 70	65	10	1	11	11
70 - 80	75	20	2	7	14
80 - 90	85	30	3	5	15
90 - 100	95	40	4	6	24

Mean = A +
$$\frac{f_i u_i}{f_i} \times h = 55 + \frac{-125}{115} \times 10$$

= 44.13 (approx)

36. (i) Since each row is increasing by 10 seats, so it is an AP with first term a = 30, and common difference d = 10.

So number of seats in 10th row

- $= a_{10}$
- = a + 9d

 $= 30 + 9 \times 10 = 120$

(ii)
$$S_n = \frac{n}{2} [2 \times 30 + (n-1)10]$$

$$1500 = \frac{n}{2} [2 \times 30 + (n - 1)10]$$

$$3000 = 50n + 10n^{2}$$

$$n^{2} + 5n - 300 = 0$$

$$n^{2} + 20n - 15n - 300 = 0$$

(n + 20)(n - 15) = 0
Rejecting the negative value, n = 15

OR

Number of seats already put up to the 10^{th} row = S₁₀

$$S_{10} = \frac{10}{2} \{ (2 \times 30 + (10 - 1)10) \}$$

= 5(60 + 90) = 750

So, the number of seats still required to be put are 1500 - 750 = 750

(iii) If number of rows = 17

then the middle row is the 9th row

 $a_9 = a + 8d = 30 + 80 = 110$ seats

37. (i) Let AD be x cm, then DB = (12 - x) cm

$$\therefore$$
 AD = AF, CF = CE, DB = BE

[tangents to a circle from an external point]

.:
$$AF = xcm$$
,
then $CF = (10 - x)cm$
 $BE = (12 - x)cm$,
then $CE = 8 - (12 - x) = (x - 4) cm$
Now $CF = CE$
 $10 - x = x - 4$
 $2x = 14$
 $\Rightarrow x = 7$ (1)
Hence, $AD = 7 cm$
Since, $\because BE = (12 - x)cm = (12 - 7) cm$

BE = 5 cm

Your Hard Work Leads to Strong Foundation

38.

MATHEMATICS

= (12 + 8 + 10) cm

= 30 cm

OR

Since, 100 cm cost = Rs.1500

So, 30 cm cost = $\frac{1500 \times 30}{100}$ = Rs.450

(i) For cuboid
ℓ = 15 cm, b = 10 cm and h = 3.5 cm
Volume of the cuboid = ℓ × b × h
= 15 × 10 × 3.5
= 525 cm³

(ii) For conical depression :

r = 0.5 cm,

h = 1.4 cm

Volume of conical depression

$$= \frac{1}{3} \times \frac{22}{7} \times 0.5 \times 0.5 \times 1.4$$

$$=\frac{11}{30}$$
 cm³

(iii) Volume of four conical depressions

$$= 4 \times \frac{11}{30} = 1.47 \,\mathrm{cm}^3$$

OR

Volume of the wood in the entire stand

= Volume of cuboid – Volume of 4 conical depressions

= 525 - 1.47= 523.53 cm³

MATHEMATICS

MATHEMATICS

SAMPLE PAPER # 2

	ANSWER AND) SC	DLUTIONS
	SECTION-A	17.	Option (2)
1.	Option (4)	18.	28 Option (2)
	More than 3		BE
2.	Option (3)		$\frac{BL}{EC}$
	$\sqrt{\mathbf{h}^2 - \mathbf{a}^2}$	19.	Option (4)
	$\cos\theta = \frac{\sqrt{b^2 - a}}{b}$		Assertion (A) is false but Reason (R) is true.
3.	Option (2)	20.	Option (2)
	$a_{r} = 3.5$		Both Assertion (A) and Reason (R) are true but
4.	Option (3)		Reason (R) is not the correct explanation of
	Trigonometric ratios of the angles.		Assertion (A).
5.	Option (2)		SECTION-B
	7.6	21	
6.	Option (3)	21.	$/A = /B = 90^{\circ} $ (Given)
	10		$\angle POA = \angle QOB$ (Vertically opposite angles)
7.	Option (2)		Since, $\triangle PAO \sim \triangle QBO$, (by AA similarity)
	2.1		ΟΑ ΡΑ
8.	Option (2)		Then, $\frac{OH}{OB} = \frac{OH}{OB}$
	5		
	2		or, $\frac{6}{45} = \frac{4}{00}$
9.	Option (1)		4.5 QB
	360 cm ²		or $OB = \frac{4 \times 4.5}{100}$
10.	Option (4)		6 6
	Median		$\therefore QB = 3 cm$
11.	Option (3)	22.	Here, the total number of possible outcomes = 5.
10	2 and -2		(i) Since, there is only one queen
12.	Option (4)		\therefore Favourable number of elementary events = 1
13	4 Option (3)		1
13.	12		\therefore Probability of getting the card of queen = $\frac{1}{5}$.
14.	Option (4)		(ii) Now the total average of rescible
1.0	7000		(ii) Now, the total number of possible $automas = 4$
15.	Option (2)		Since there is only one ace
			Equation is only one act
	V34		\therefore rayourable number of elementary events = 1
16.	Option (3)		events - 1
	<u>1</u>		Probability of getting on acc card $=$
	4		$\frac{1}{4}$

MATHEMATICS

- 23. HCF × LCM = Product of two numbers
 9 × 360 = 45 × 2nd number
 2nd number = 72
 - OR

Let us assume, to the contrary that $7 - \sqrt{5}$ is rational

$$7 - \sqrt{5} = \frac{p}{q}$$
, where p & q are co-prime and $q \neq 0$

 $\Rightarrow \sqrt{5} = \frac{7q-p}{q}$

 $\frac{7q-p}{q}$ is rational = $\sqrt{5}$ is rational which is a

contradiction

Hence $7 - \sqrt{5}$ is irrational

24. 20th term from the end = $\ell - (n - 1)d$ = 253 - 19 × 5 = 158

$$/a_7 = 11a_{11}$$

$$\Rightarrow 7(a + 6d) = 11(a + 10d)$$

$$\Rightarrow 4a + 68d = 0$$

$$\Rightarrow a + 17d = 0$$

$$\Rightarrow a_{18} = 0$$

$$6 - 6$$

25. $x = \frac{6-6}{5} = 0$

$$y = \frac{-10 + 15}{5} = 1$$

Hence, coordinates of point P(0, 1)

SECTION-C

26. Let the numerator be x and denominator be y.

 \therefore Fraction = $\frac{x}{y}$

Now, according to question,

$$\frac{x-1}{y} = \frac{1}{3} \qquad \Rightarrow \quad 3x - 3 = y$$

$$\therefore 3x - y = 3 \qquad \dots (i)$$

and
$$\frac{x}{y+8} = \frac{1}{4} \implies 4x = y+8$$

 $\therefore 4x - y = 8$ (ii)

Now, subtracting equation (ii) from (i), we have

$$3x - y = 3$$
$$4x - y = 8$$
$$- + -$$
$$- x = -5$$

Putting the value of x in equation (i), we have $3 \times 5 - y = 3 \implies 15 - y = 3 \implies 15 - 3 = y$ $\therefore y = 12$

Hence, the required fraction is $\frac{5}{12}$.

x = 5

OR

Let the speed of car at A be x km/h And the speed of car at B be y km/h

Case 1
$$8x - 8y = 80$$

$$\mathbf{x} - \mathbf{y} = 10$$

Case 2
$$\frac{4}{3}x + \frac{4}{3}y = 80$$

x + y = 60On solving x = 35 and y = 25

Hence, speed of cars at A and B are 35 km/h and 25 km/h respectively

27. LHS =
$$\sin\theta(1 + \tan\theta) + \cos\theta(1 + \cot\theta)$$

$$= \sin\theta + \sin\theta \cdot \frac{\sin\theta}{\cos\theta} + \cos\theta + \cos\theta \frac{\cos\theta}{\sin\theta}$$

$$= (\sin\theta + \cos\theta) + \frac{\sin^2\theta}{\cos\theta} + \frac{\cos^2\theta}{\sin\theta}$$

$$= (\sin\theta + \cos\theta) + \frac{\sin^3\theta + \cos^3\theta}{\sin\theta\cos\theta}$$

$$(i) = (\sin\theta + \cos\theta) \left[1 + \frac{\sin^2\theta + \cos^2\theta - \sin\theta\cos\theta}{\sin\theta\cos\theta} \right]$$

Hour Hard Work Leads to Strong Foundation

ALLEN

CLASS - X STANDARD (CBSE SAMPLE PAPER)

MATHEMATICS

 $S_{10} = \frac{10}{2} [2a + 9d] \Rightarrow S_{10} = 10a + 45d$ $3(S_{20} - S_{10}) = 3[20a + 190d - 10a - 45d]$ $= 3[10a + 145d] = 30a + 435d = S_{30}$ [From (i)] Hence, $S_{30} = 3(S_{20} - S_{10})$ Hence proved. **OR** Sum of first seven terms,

 $S_{n} = \frac{n}{2} [2a + (n - 1)d]$ $S_{7} = \frac{7}{2} [2a + (7 - 1)d] = \frac{7}{2} [2a + 6d]$ $\Rightarrow 63 = 7a + 21d$

$$\Rightarrow a = \frac{63 - 21d}{7} \qquad \dots (1)$$

 $\Rightarrow S_{14} = \frac{14}{2} [2a+13d]$ $\Rightarrow S_{14} = 7 [2a+13d] = 14 a + 91d$ But ATQ,

$$S_{1-7} + S_{8-14} = S_{14}$$

$$63 + 161 = 14a + 91d$$

$$224 = 14a + 91d$$

$$2a + 13d = 32$$

$$2\left(\frac{63-21d}{7}\right) + 13d = 32$$
 (from 1)

$$\Rightarrow 126 - 42d + 91d = 224$$

$$\Rightarrow 49d = 98$$

$$\Rightarrow d = 2$$

$$\Rightarrow a = \frac{63-21\times 2}{7} = \frac{63-42}{7} = 3$$

$$\Rightarrow a_{28} = a + 27d = 3 + 27 \times 2$$

$$\Rightarrow a_{28} = 3 + 54 = 57$$

33. Let OA be the tower of height h, and P be the initial position of the car when the angle of depression is 30°.

After 6 seconds, the car reaches to Q such that the angle of depression at Q is 60° . Let the speed of the car be v metre per second. Then,

PQ = 6v (:: Distance = speed × time)

and let the car take t seconds to reach the tower OA from Q (Figure). Then OQ = vt metres.

tan
$$60^\circ = \frac{OA}{QO}$$

 $\Rightarrow \sqrt{3} = \frac{h}{vt} \Rightarrow h = \sqrt{3} vt \qquad \dots(i)$
Now, in $\triangle APO$, we have

$$\tan 30^\circ = \frac{OA}{PO}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{6v + vt} \Rightarrow \sqrt{3}h = 6v + vt \quad \dots(ii)$$

Now, substituting the value of h from (i) and into (ii), we have

$$\sqrt{3} \times \sqrt{3}$$
 vt = 6v + vt

$$\Rightarrow 3vt = 6v + vt \Rightarrow 2vt = 6v \Rightarrow t = \frac{6v}{2v} = 3$$

Hence, the car will reach the tower from Q in 3 seconds.

35.

MATHEMATICS

Let AC be the tree and BC' be the broken part. A A DC

In
$$\Delta ABC'$$

tan $30^{\circ} = \frac{AB}{30}$
 $\frac{1}{\sqrt{3}} = \frac{AB}{30}$
 $\frac{30}{\sqrt{3}} = AB$
 $AB = 10\sqrt{3} \text{ m}$
Also $\cos 30^{\circ} = \frac{AC'}{BC'}$
 $\frac{\sqrt{3}}{2} = \frac{30}{BC'}$
 $BC = \frac{60}{\sqrt{3}}$
 $BC = 20\sqrt{3} \text{ m}$
Total height = AB + BC
 $= 10\sqrt{3} + 20\sqrt{3}$
 $= 30\sqrt{3} \text{ m}$
In ΔAPE and ΔBPF ,
 $\angle APE = \angle BPF$ [Vertically opposite angles]
 $\angle AEP = \angle BFP$ [Alternate angles]
By AA similarity, $\Delta APE \sim \Delta BPF$
Thus, $\frac{AP}{BP} = \frac{PE}{PF} = \frac{AE}{BF}$ (1)
In $\triangle CPE$ and $\triangle DPF$,
 $\angle CPE = \angle DPF$ [Vertically opposite angles]
 $\angle CEP = \angle DFP$ [Alternate angles]
By AA similarity, $\triangle CPE \sim \Delta DPF$
Thus, $\frac{CP}{DP} = \frac{PE}{PF} = \frac{CE}{DF}$ (2)
In $\triangle APC$ and $\triangle BPD$,
 $\angle APC = \angle BPD$ [Vertically opposite angles]

34.

 $\angle ACP = \angle BDP$ [Alternate angles] By AA similarity, $\triangle APC \sim \triangle BPD$

....(1)

....(2)

Thus, $\frac{AP}{BP} = \frac{PC}{PD} = \frac{AC}{BD}$(3) From equations (1), (2) and (3), we get

 $\underline{AE} = \underline{AC} = \underline{CE}$ BF BD FD

Hence proved

Class Interval	Frequency	cf
0 - 100	2	2
100 - 200	5	7
200 - 300	х	7 + x
300 - 400	12	19 + x
400 - 500	17	36 + x
500 - 600	20	56 + x
600 - 700	у	56 + x + y
700 - 800	9	65 + x + y
800 - 900	7	72 + x + y
900 - 1000	4	76 + x + y

N = 100

 \Rightarrow 76 + x + y = 100

$$\Rightarrow$$
 x + y = 24 ...(i)

Median = 525

 \Rightarrow 500 – 600 is median class

Median =
$$\ell + \frac{\frac{n}{2} - cf}{f} \times h$$

$$\Rightarrow 500 + \left(\frac{50 - 36 - x}{20}\right) \times 100 = 525$$
$$\Rightarrow (14 - x) \times 5 = 25$$
$$\Rightarrow x = 9$$
$$\Rightarrow \text{ from (1), y = 15}$$

SECTION-D

Let the fixed charge for two days be Rs.x 36. (i) and additional charge be Rs.y per day. As Radhika has taken book for 4 days. It means that Radhika will pay fixed charge for first two days and pays additional charges for next two days. x + 2y = 16

> (ii) As the fixed charge for two days be Rs.x and additional charge be Rs.y per day It means that Amruta will pay fixed charge for first two days and pays additional charges for next four days.

> > x + 4y = 22

		PRE-NURTURE & CARE	ER FO	UND	ATION DIVISION	MATHEMATICS
37. (i)	SEAS) $x + 4y = 22$ x + 2y = 16 On solving x Therefore, a For two models $2y = 2 \times 3 =$ Total money is $22 + 16 +$ Number of x Number of x The maximum which they = HCF of 11 \therefore Prime fact and 225 = 3 \therefore Maximum (135, 225) =	PRE-NURTURE & CAREI(i)(ii)(i) and (ii)dditional charges is $y = Rs.3$ ORre days price charged will be6paid by Amruta and Radhika6 + 6 = Rs.50rose plants = 135marigold plants = 225num number of columns incan be planted35 and 225etors of 135 = $3 \times 3 \times 3 \times 5$ × $3 \times 5 \times 5$ n number of columns = HCF: $3 \times 3 \times 5 = 45$	ER FO 38.	(iii) (iii) (ii) (iii)	ATION DIVISION We have proved that number of columns = 4: So, prime factors of 45 = $= 3^2 \times 5^1$ \therefore Sum of exponents = 2 Number of rows of Rose Number of rows of marigola Total number of rows = Area of grass field = 15 Area of field horse can $= \frac{1}{4} \times \frac{22}{7} \times 25$ $= 19.64 \text{ m}^2$. If rope was 10 m of gras	MATHEMATICS The maximum 5 = $3 \times 3 \times 5$ 2 + 1 = 3. plants = $\frac{135}{45} = 3$ d plants = $\frac{225}{45} = 5$ 3 + 5 = 8 $\times 15 = 225 \text{ m}^2$ graze = $\frac{1}{4}\pi 5^2$ zing field
	∴ Maximur (135, 225) = Total numbe plants	n number of columns = HCF $3 \times 3 \times 5 = 45$ OR er of plants 135 + 225 = 360			$= \frac{1}{4} \times \frac{22}{7} \times 100 = 78.57 \text{ m}$ OR Increase in area = 78.57 -	1^{2} 19.64 = 58.93 m ²
			1			

MATHEMATICS

MATHEMATICS

SAMPLE PAPER # 3

L	ANSWER A	ND S	OLUTIONS
	SECTION-A	18.	Option (1)
	SECTION A		$\sqrt{119}$ cm
1.	Option (2)	19	Option (4)
2.	Option (1)	17.	Assertion (A) is false but Reason (R) is true
	(3, 1)	20	Option (2)
3.	Option (2)	20.	Option (5) (A) is true but Decomp (D) is follow
	$k \leq 4$		Assertion (A) is true but Reason (R) is faise.
4.	Option (4) $\sqrt{2}$ and		SECTION-B
_	$4\sqrt{2}$ cm	21.	Number divisible by 8 between 200 and 500
5.	Option (1) 60°		are 208, 216, 224,496 which forms an
6.	Option (4)		A.P.
	9 units		\therefore First term (a) = 208, common difference (d) = 8
7.	Option (1)		n ⁱⁿ term of an A.P. is $a_n = a + (n - 1)d$
0	7.8		496 = 208 + (n - 1)8
8.	Option (2)		$\Rightarrow 288 = (11 - 1)8$ $\Rightarrow n - 1 - 36$
9.	Option (1)		$\Rightarrow n = 37$
	0		OR
	$-\frac{9}{4}$		Here, $a = 16$, $\ell = 128$
10.	Option (1)		n
	0		$S_n = \frac{\pi}{2}(a+\ell)$
11.	Option (4)		
10	3 Option (2)		$=\frac{8}{2}(16+128)$
12.	Option (3)		2 (10 + 120)
10	25 Option (1)		$= 4 \times 144$
13.	Option (4)		= 576
	16.8 cm	22.	Total possible outcomes = $6 \times 6 = 36$
14.	Option (3)		Favourable outcomes are $\{(1, 6), (2, 3), (3, 2), (3,$
	5		(6, 1) i.e. 4 in number.
	4		\therefore P(getting the product 6) = $\frac{4}{26} = \frac{1}{26}$
15.	Option (3)	23.	If height is 40 cm
	4	_	circumference of base of cylinder = 22 cm
16.	Option (4)		22
	17.5		$2 \times \frac{22}{7} \times r = 22$
17.	Option (2)		7
	tan30°		$r = \frac{7}{2}$ cm
			2

Your Hard Work Leads to Strong Foundation

MATHEMATICS

Any number which ends in zero must have at 24. least 2 and 5 as prime factors. $6 = 2 \times 3$ $6^{n} = (2 \times 3)^{n}$ $= 2^n \times 3^n$ Hence, prime factor of 6 are 2 and 3 Thus, 6^n can never end with digit 0. OR $90 = 2 \times 3^2 \times 5$ $144 = 2^4 \times 3^2$ $HCF = 2 \times 3^2 = 18$ $LCM = 2^4 \times 3^2 \times 5 = 720$ 25. Let P(x, y) is equidistant from A(-5, 3) and B(7, 2) AP = BP $\Rightarrow \sqrt{((x+5)^2 + (y-3)^2)} = \sqrt{((x-7)^2 + (y-2)^2)}$ \Rightarrow x² + 10x + 25 + y² - 6y + 9 $= x^{2} - 14x + 49 + y^{2} - 4y + 4$ 10x - 6y + 34 = -14x - 4y + 5310x + 14x - 6y + 4y = 53 - 3424x - 2y = 1924x - 2y - 19 = 0is the required relation.

SECTION-C

26. Radius of the cylinder (r) = 3.5 cm Height of the cylinder (h) = 10 cm Curved surface area of cylinder = 2π rh

$$= 2 \times \frac{22}{7} \times \frac{35}{10} \times 10 \text{ cm}^2$$

 $= 220 \text{ cm}^2$

Curved surface area of a hemisphere = $2\pi r^2$ Curved surface area of both hemispheres

$$= 2 \times 2\pi r^2 = 4\pi r^2 = 4 \times \frac{22}{7} \times \frac{35}{10} \times \frac{35}{10} \text{ cm}^2$$

 $= 154 \text{ cm}^2$

Total surface area of the remaining solid

= (Curved surface area of cylinder + curved surface area of 2 hemispheres)

 $= (220 + 154) \text{ cm}^2 = 374 \text{ cm}^2.$

Given : d = 24 m, h = 3.5 m

Volume of rice = $\frac{1}{3}\pi 12^2 \times 3.5 = 528 \text{ m}^3$

Canvas cloth required to cover heap

$$= \pi r \ell \qquad \dots (1)$$

$$\ell = \sqrt{12^2 + 3.5^2} = 12.50$$

From (1)

27.

r = 12 m

Cloth required = $\frac{22}{7} \times 12 \times 12.5 = 471.43 \text{ m}^2$

Salary	Number	c.f.
(₹ in thousand)	of Persons	
5 - 10	49	49
10 – 15	133	182
15 – 20	63	245
20 - 25	15	260
25 - 30	6	266
30 - 35	7	273
35 - 40	4	277
40 - 45	2	279
45 - 50	1	280

$$n = 280, \ \frac{n}{2} = 140$$

So, median class is 10 - 15

 $\ell = 10, \, cf = 49, \, f = 133, \, h = 5$

Median =
$$\ell + \frac{\frac{n}{2} - cf}{f} \times h$$

$$= 10 + \frac{140 - 49}{133} \times 5$$

$$= 10 + 3.42$$

MATHEMATICS

28. Let the radii of the largest semicircle, the smallest semicircle and the circle with diameter BD be r_1 , r_2 and r_3 respectively.

Given, AE = 14 cm \Rightarrow r₁ = 7 cm

and DE = AB = 3.5 cm
$$\therefore$$
 r₂ = $\frac{3.5}{2}$ cm

$$r_3 = r_1 - 2r_2 = 7 - 2 \times \frac{3.5}{2} = 7 - 3.5 = 3.5 \text{ cm}$$

Area of the shaded region = Area of semicircle with radius r_1 + Area of semicircle with radius $r_3 - 2 \times$ Area of semicircle with radius r_2

$$= \frac{1}{2} \pi(r_{1})^{2} + \frac{1}{2} \pi(r_{3})^{2} - 2 \times \frac{1}{2} \pi(r_{2})^{2}$$

$$= \frac{1}{2} \pi\{(r_{1})^{2} + (r_{3})^{2} - 2(r_{2})^{2}\}$$

$$= \frac{1}{2} \times \frac{22}{7} \left\{ (7)^{2} + (3.5)^{2} - 2\left(\frac{3.5}{2}\right)^{2} \right\}$$

$$= \frac{11}{7} \left\{ 49 + 12.25 - \frac{12.25}{2} \right\}$$

$$= \frac{11}{7} (49 + 6.125)$$

$$= \frac{11}{7} \times 55.125 = 86.625 \text{ cm}^{2}$$
OR
$$= \frac{11}{7} \times 55.125 = 86.625 \text{ cm}^{2}$$

Given, AB = 6 cm and BC = 10 cm By pythagoras theorem, in \triangle ABC, we get AC² = BC² - AB² = (10)² - (6)² = 64

R

 \Rightarrow AC = 8 cm

Let the radius of the incircle be r.

Let the circle touch side AB at P, side AC at Q and side BC at R.

Join OP, OQ and OR.

We know that the radius from the centre of the circle is perpendicular to the tangent through the point of contact.

 \therefore OP \perp AB, OQ \perp AC and OR \perp BC Also, the tangents drawn from an external point to the circle are equal. \therefore AP = AQ, BP = BR, CR = CQ Now, in quadrilateral AQ = AP and $\angle AQO = \angle APO = \angle PAQ = 90^{\circ}$ OPAQ is a square. \therefore OP = AQ = AP = OQ = r \therefore PB = 6 - r \Rightarrow BR = 6 - r $CQ = 8 - r \Rightarrow CR = 8 - r$ Now, BC = BR + CR $\Rightarrow 10 = 6 - r + 8 - r \Rightarrow 10 = 14 - 2r$ \Rightarrow r = 2 cm Now, area of shaded region = Area of $\triangle ABC$ – Area of circle $=\frac{1}{2} \times AB \times AC - \pi r^{2} = \frac{1}{2} \times (8) \times (6) - 3.14(2)^{2}$ $= 24 - 12.56 = 11.44 \text{ cm}^2$ 29. Sum of all the prizes = Rs.700 Let the first prize = a $\therefore 2^{nd}$ prize = (a - 20) 3^{rd} prize = (a - 40) $4^{th} prize = (a - 60)$ Thus, we have, first term = aCommon difference = -20Sum of 7 terms $S_7 = 700$ Since, $S_n = \frac{n}{2} [2a + (n - 1)d]$ $\Rightarrow 700 = \frac{7}{2} [2(a) + (7 - 1) \times (-20)]$ $\Rightarrow 700 = \frac{7}{2} [2a + (6 \times -20)]$

32.

$$\Rightarrow 700 \times \frac{2}{7} = 2a - 120$$
$$\Rightarrow 200 = 2a - 120 \Rightarrow 2a = 200 + 120 = 320$$
$$\Rightarrow a = \frac{320}{2} = 160$$

Thus, the values of the seven prizes are Rs.160, Rs.(160 - 20), Rs.(160 - 40), Rs.(160 - 80), Rs.(160 - 100) and Rs.(160 - 120) = Rs.160, Rs.140, Rs.120, Rs.100, Rs.80, Rs.60 and Rs.40

30. LHS = $(1 + \cot A - \csc A)(1 + \tan A + \sec A)$

$$= \left(1 + \frac{\cos A}{\sin A} - \frac{1}{\sin A}\right) \left(1 + \frac{\sin A}{\cos A} + \frac{1}{\cos A}\right)$$
$$= \left(\frac{\sin A + \cos A - 1}{\sin A}\right) \left(\frac{\cos A + \sin A + 1}{\cos A}\right)$$
$$= \frac{(\sin A + \cos A)^2 - 1}{\sin A \cos A} = \frac{1 + 2\sin A \cos A - 1}{\sin A \cos A}$$

$$= \frac{2\sin A \cos A}{\sin A \cos A}$$

= RHS

Hence proved.

31. BQ = 12 cm,
OB = 13 cm

$$\therefore$$
 OQ = $\sqrt{13^2 - 12^2}$
 $= \sqrt{169 - 144} = \sqrt{25}$
OQ = 5 cm
Let PQ = y and PA = x
In \triangle POA : $x^2 + 13^2 = (y + 5)^2$
 $x^2 + 169 = y^2 + 10y + 25$
 $\therefore x^2 - y^2 + 169 - 25 = 10y$... (1)
In \triangle PQA : $x^2 = 12^2 + y^2$
 $x^2 - y^2 = 144$... (2)
Put (2) in (1) 144 + 169 - 25 = 10y
 $10y = 288 \Rightarrow y = 28.8$
PA = $x = \sqrt{144 + (28.8)^2} = \sqrt{973.44}$
 $= 31.2$ cm

SECTION-D
SECTION-D
SECTION-D
A
A
D
D
C
We are given that
BC² = AC × CD

$$\Rightarrow \frac{BC}{CD} = \frac{AC}{BC}$$
(1)
In $\triangle ABC$ and $\triangle BDC$, we have
 $\frac{AC}{BC} = \frac{BC}{CD}$ [Using (1)]
and $\angle BCA = \angle DCB$ [Each = $\angle C$ of $\triangle ABC$]
 $\Rightarrow \triangle ABC \sim \triangle BCD$ [By SAS similarity]
 $\Rightarrow \frac{AC}{BD} = \frac{BC}{CD}$ [$\because AB = AC$ is given]
 $\Rightarrow \frac{AC}{BD} = \frac{BC}{CD}$ [$\because AB = AC$ is given]
 $\Rightarrow \frac{AC}{BC} = \frac{BD}{CD}$ [$\because Each = \frac{AC}{BC}$]
From (1) and (2), we have
 $\frac{BD}{CD} = \frac{BC}{CD}$ [$\because Each = \frac{AC}{BC}$]
 $\Rightarrow BD = BC.$
Hence proved
Let the usual speed of the train be xkm/h
 $\frac{300}{x} - \frac{300}{x+5} = 2$

33.

 $\Rightarrow x^2 + 5x - 750 = 0$

 $\Rightarrow x = -30,25$

 $\Rightarrow (x + 30)(x - 25) = 0$

 \therefore Usual speed of the train = 25 km/h

MATHEMATICS

$$\frac{1}{(a+b+x)} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x}$$
$$\Rightarrow \frac{x-a-b-x}{x(a+b+x)} = \frac{b+a}{ab}$$
$$\Rightarrow -ab = x^2 + (a+b)x$$
$$\Rightarrow x^2 + ax + bx + ab = 0$$
$$\Rightarrow (x+a)(x+b) = 0$$
$$\Rightarrow x = -a, -b$$

In ΔABE,

$$\frac{h}{x} = \tan 30^{\circ}$$

 $\Rightarrow x = h\sqrt{3}$

In ΔBDE,

 $\frac{h+60+60}{x} = tan60^{\circ}$

 $h + 120 = x\sqrt{3}$

$$h + 120 = h\sqrt{3} \times \sqrt{3}$$

2h = 120

h = 60

 \therefore height of cloud from surface of water

= (60 + 60)m = 120 m

35. Two solutions of each linear equation

$$x + 3y = 6$$
 ...(i)

and 2x - 3y = 12 ...(ii)

are given below.

The graphical representation of the given pair of linear equations is as follows :

Thus, the coordinates of point where the line x + 3y = 6 intersects the y-axis at (0, 2) and the line 2x - 3y = 12 intersects the y-axis at (0, -4).

OR

Let the fraction be $\frac{x}{y}$. According to question $\therefore x + y = 2x + 4 \Rightarrow x = y - 4$ Also, $\frac{x+3}{y+3} = \frac{2}{3}$ $\Rightarrow \frac{y-4+3}{y+3} = \frac{2}{3}$ $\Rightarrow \frac{y-1}{y+3} = \frac{2}{3}$ $\Rightarrow 3y - 3 = 2y + 6 \Rightarrow y = 9$ Substituting the value of y in (i), we get x = 5Thus, the required fraction is $\frac{5}{9}$.

MATHEMATICS

SECTION-E

36. (i) Coordinates of $S = \left(\frac{-3+3}{2}, \frac{4+4}{2}\right) = (0, 4)$ (ii) Coordinates of $T = \left(\frac{3-2}{2}, \frac{4-1}{2}\right) = \left(\frac{1}{2}, \frac{3}{2}\right)$ (iii) Centriod of $\Delta PQR = \left(\frac{-3+3-2}{3}, \frac{4+4-1}{3}\right)$ $= \left(\frac{-2}{3}, \frac{7}{3}\right)$

Coordinates of

$$U = \left(\frac{-3-2}{2}, \frac{4-1}{2}\right) = \left(\frac{-5}{2}, \frac{3}{2}\right)$$

OR

Coordinates of Centroid of ΔSTU

$$=\left(\frac{0-\frac{5}{2}+\frac{1}{2}}{3},\frac{4+\frac{3}{2}+\frac{3}{2}}{3}\right)=\left(\frac{-2}{3},\frac{7}{3}\right)$$

37. (i) Minimum number of books = LCM(32,36) $32 = 2 \times 2 \times 2 \times 2 \times 2$ $36 = 2 \times 2 \times 3 \times 3$ LCM = $2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 = 288$ (ii) HCF = $\frac{32 \times 36}{288} = 4$

$$36 = 2 \times 2 \times 3 \times 3$$
(iii) $p = ab^{2}$

$$= a \times b \times b$$

$$q = a^{2}b = a \times a \times b$$

$$LCM(p, q) = a \times a \times b \times b = a^{2}b^{2}$$
38. (i) $\angle ORP = \angle OQP = 90^{\circ}$
In quadrilateral ROQP
 $\angle P + \angle O + \angle ORP + \angle OQP = 360^{\circ}$
 $\angle O = 180^{\circ} - 30^{\circ}$
 $\angle C = 180^{\circ} - 30^{\circ}$
 $\angle C = 180^{\circ} - 30^{\circ}$
 $\angle ROQ = 150^{\circ}$
(ii) $\angle RSQ = \frac{1}{2} \angle ROQ$

$$= \frac{1}{2} \times 150^{\circ}$$

$$= 75^{\circ}$$
(iii) In $\triangle ORQ$

$$OQ = OR$$

$$[Radii of same circle]$$
 $\angle OQR = \angle ORQ$

$$[Angle opposite to equal sides are equal]$$
 $\angle OQR + \angle OQR + 150^{\circ} = 180^{\circ}$
 $\angle OQR = 15^{\circ}$
 $\angle RQP = 90^{\circ} - 15^{\circ} = 75^{\circ}$

$$OR$$

$$SR \parallel PQ$$
 $\angle SRQ = \angle RQP = 75^{\circ}$

$$[Alternate angles]$$

 \angle SRO = 75° - 15° = 60°

OR

MATHEMATICS

HEMATICS

SAMPLE PAPER #

ANSWER AND S IONS

	SECTION-A
1.	Option (3)
	0
2.	Option (1)
	0
3.	Option (2)
	2
4.	Option (1)
_	3:5
5.	Option (2)
	$\frac{3}{4}$
6.	Option (2)
	14 cm
7.	Option (3)
	0, -2, 2
8.	Option (3)
	$\frac{12}{13}$
9.	Option (2)
	100°
10.	Option (3)
	$\frac{1}{2}$
11.	Option (3)
	60 m
12.	Option (3)
	60
13.	Option (1)
	(14, 9)
14.	Option (3)
	42,21

5		IV
15.	Option	(1)
	$\frac{15}{2}$, 9	
16.	Option	(2)
	-1	
17.	Option	(1)

$$\ell + \frac{\frac{N}{2} - cf}{f} \times h$$

18. Option (1)

No real roots

19. Option (3)

Assertion (A) is true but Reason (R) is false.

20. Option (1)

> Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).

SECTION-B

- 21. Savita may have any one of the 365 days of the year as her birthday. Similarly, Hamida may have any one of 365 days of the year as her birthday.
 - : Total number of ways in which Savita and Hamida may have their birthday = 365×365
 - (i) Savita and Hamida may have same birthday on any one of 365 days of the year.
 - : Number of ways in which Savita and Hamida will have same birthday = 365
 - ... Probability that Savita and Hamida will have

the same birthday = $\frac{365}{365 \times 365}$ 1

MATHEMATICS

(ii) We have,

Probability that Savita and Hamida will have different birthdays = 1 - Probability that Savita and Hamida will have the same

birthday
$$=1-\frac{1}{365}=\frac{364}{365}$$

22. Let S_n denote the sum of n terms of an A.P. whose nth term is a_n .

We have,

 $S_n = \frac{3n^2}{2} + \frac{5n}{2}$

 $\therefore a_n = S_n - S_{n-1}$

$$S_{n-1} = \frac{3}{2}(n-1)^2 + \frac{5}{2}(n-1)$$

[Replacing n by (n - 1)]

$$= \left\{\frac{3n^2}{2} + \frac{5n}{2}\right\} - \left\{\frac{3}{2}(n-1)^2 + \frac{5}{2}(n-1)\right\}$$

$$\Rightarrow a_{n} = \frac{3}{2} \{n^{2} - (n-1)^{2}\} + \frac{5}{2} \{n - (n-1)\}$$

 $\Rightarrow a_{n} = \frac{3}{2}(2n-1) + \frac{5}{2}$ $\Rightarrow a_{25} = \frac{3}{2}(2 \times 25 - 1) + \frac{5}{2} = \frac{3}{2} \times 49 + \frac{5}{2} = 76$

[Replacing n by 25]

OR

Here, $a_1 = -1$, $a_2 = -5$ and d = -4

$$S_n = \frac{n}{2} [2a + (n - 1)d]$$

∴ $S_{16} = \frac{16}{2} [2 \times (-1) + (16 - 1)(-4)]$
= 8[-2 - 60] = 8(-62)
= -496

23. LHS:
$$\frac{\sin^{4} \theta + \cos^{4} \theta}{1 - 2\sin^{2} \theta \cos^{2} \theta}$$
$$= \frac{(\sin^{2} \theta + \cos^{2} \theta)^{2} - 2\sin^{2} \theta \cos^{2} \theta}{1 - 2\sin^{2} \theta \cos^{2} \theta}$$
$$= \frac{1 - 2\sin^{2} \theta \cos^{2} \theta}{1 - 2\sin^{2} \theta \cos^{2} \theta} = 1$$
$$= RHS$$
24. \therefore ABCD is rectangle
 $\Rightarrow x + y = 30 \qquad \dots \dots (1)$ $x - y = 14 \qquad \dots (2)$ Adding (1) and (2) we get
 $2x = 44$ $x = 22$ Subtracting (1) and (2) we get
 $2y = 16$ $y = 8$

OR

The given system of equations is x - ky - 2 = 0 3x + 2y + 5 = 0This system of equation is of the form $a_1x + b_1y + c_1 = 0$ $a_2x + b_2y + c_2 = 0$ where, $a_1 = 1$, $b_1 = -k$, $c_1 = -2$ and $a_2 = 3$, $b_2 = 2$, $c_2 = 5$ For a unique solution, we must have

$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2} \text{ i.e.}, \frac{1}{3} \neq \frac{-k}{2} \implies k \neq \frac{-2}{3}$$

25. $\angle PAO = \angle PBO = 90^{\circ}$ (angle between radius and tangent)

 $\angle AOB = 105^{\circ}$

(By angle sum property of a triangle)

$$\angle AQB = \frac{1}{2} \times 105^\circ = 52.5^\circ$$

(Angle at the remaining part of the circle is half the angle subtended by the arc at the centre)

30

26.

CLASS - X STANDARD (CBSE SAMPLE PAPER)

27.

MATHEMATICS

SECTION-C

We know that tangent drawn from an external point to a circle are equal.

AF = AD

BE = BD,CE = CF

AB = AC

AD + BD = AF + FC

 $\Rightarrow BD = FC \qquad (\therefore AD = AF)$

 $BE = EC \qquad (\because BD = BE, CE = CF)$

(Given)

: E bisects BC.

OR

AC = 8 cm AB = 10 cm and BC = 12 cm Let CF = x CF = EC = x AF = 8 - x = AD BE = 12 - x = BD $\Rightarrow 8 - x + 12 - x = 10$ 20 - 2x = 10

 $-2x = -10 \Rightarrow x = 5$ AD = 3 cm BE = 7 cm and CF = 5 cm

Graph of 2x + 4y = 10We have, $2x + 4y = 10 \Rightarrow 4y = 10 - 2x \Rightarrow y = \frac{5 - x}{2}$ When x = 1, we have $y = \frac{5-1}{2} = 2$ When x = 3, we have $y = \frac{5-3}{2} = 1$ Thus, we have the following table : 1 3 Х 2 1 v Graph of 3x + 6y = 12: We have, $3x + 6y = 12 \Rightarrow 6y = 12 - 3x$ \Rightarrow y = $\frac{4-x}{2}$ When x = 2, we have $y = \frac{4-2}{2} = 1$ When x = 0, we have $y = \frac{4-0}{2} = 2$ Thus, we have the following table : 2 0 Х 2 1

We find the lines represented by equations 2x + 4y = 10 and 3x + 6y = 12 are parallel. So, the two lines have no common point. Hence, the given system of equations has no solution.

Your Hard Work Leads to Strong Foundation

MATHEMATICS

28. Let AD be the median through the vertex A of $\triangle ABC$. Then, D is the mid-point of BC. So, the

coordinates of D are
$$\left(\frac{-3-1}{2}, \frac{-2+8}{2}\right)$$

i.e.,
$$(-2, 3)$$
.

:. AD =
$$\sqrt{(5+2)^2 + (-1-3)^2}$$

= $\sqrt{49+16} = \sqrt{65}$ units

Let G be the centroid of $\triangle ABC$. Then, G lies on median AD and divides it in the ratio 2 : 1. So, coordinates of G are

We have,

$$SP = \sqrt{(at^{2} - a)^{2} + (2at - 0)^{2}}$$

= $a\sqrt{(t^{2} - 1)^{2} + 4t^{2}} = a(t^{2} + 1)$
and $SQ = \sqrt{\left(\frac{a}{t^{2}} - a\right)^{2} + \left(\frac{2a}{t} - 0\right)^{2}}$
 $\Rightarrow SQ = \sqrt{\frac{a^{2}(1 - t^{2})^{2}}{t^{4}} + \frac{4a^{2}}{t^{2}}}$
 $\Rightarrow SQ = \frac{a}{t^{2}}\sqrt{(1 - t^{2})^{2} + 4t^{2}}$

$$= \frac{a}{t^2} \sqrt{(1+t^2)^2} = \frac{a}{t^2} (1+t^2)$$
$$\therefore \frac{1}{t^2} + \frac{1}{t^2} = \frac{1}{t^2} + \frac{t^2}{t^2}$$

$$\frac{1}{SP} + \frac{1}{SQ} = \frac{1}{a(t^2 + 1)} + \frac{1}{a(t^2 + 1)}$$

$$\Rightarrow \frac{1}{SP} + \frac{1}{SQ} = \frac{1+t^2}{a(t^2+1)} = \frac{1}{a}$$

which is independent of t.

29. LHS =
$$(\csc\theta + \cot\theta)^2$$

 $= \csc^2\theta + \cot^2\theta + 2\csc\theta. \cot\theta.$

$$= \left(\frac{1}{\sin\theta}\right)^{2} + \left(\frac{\cos\theta}{\sin\theta}\right)^{2} + \frac{2\times1}{\sin\theta} \times \frac{\cos\theta}{\sin\theta}$$
$$= \frac{1}{\sin^{2}\theta} + \frac{\cos^{2}\theta}{\sin^{2}\theta} + \frac{2\cos\theta}{\sin^{2}\theta}$$
$$= \frac{1+\cos^{2}\theta+2\cos\theta}{\sin^{2}\theta}$$
$$= \frac{(1+\cos\theta)^{2}}{\sin^{2}\theta}$$
$$= \frac{(1+\cos\theta)(1+\cos\theta)}{1-\cos^{2}\theta}$$
$$= \frac{(1+\cos\theta)(1+\cos\theta)}{(1+\cos\theta)(1-\cos\theta)}$$
$$= \frac{1+\cos\theta}{1-\cos\theta}$$
$$= \frac{1+\frac{1}{\sec\theta}}{1-\frac{1}{\sec\theta}}$$
$$= \frac{\sec\theta+1}{\sec\theta-1}$$
$$= RHS.$$

MATHEMATICS

VVERSERS	
Let one number be x then other number is	
27 - x	
x(27 - x) = 50	32
$27x - x^2 = 50$	
$x^2 - 27x + 50 = 0$	
(x - 25)(x - 2) = 0	
x = 25 or x = 2	
Numbers (25, 2)	
Let us assume, to the contrary that \sqrt{p} is	
rational.	
So, we can find co-prime integers 'a' and 'b' $(b \neq 0)$,	
such that $\sqrt{p} = \frac{a}{b}$	
$\Rightarrow \sqrt{p} b = a$	
$\Rightarrow pb^2 = a^2$ (i)	
$\Rightarrow a^2$ is divisible by p	
\Rightarrow a is divisible by p	
So, we can write $a = pc$ for some integer c.	
Therefore, $a^2 = p^2 c^2$ (squaring both side)	
$\Rightarrow pb^2 = p^2c^2$ (from (i))	
\Rightarrow b ² = pc ²	
\Rightarrow b ² is divisible by p	
\Rightarrow b is divisible by p	
\Rightarrow p divides both a and b.	
\Rightarrow 'a' and 'b' have at least 'p' as a common factor	
But this contradicts the fact that 'a' and 'b' are coprime.	
This contradiction arises becuase we have	
assumed that \sqrt{p} is rational.	
	Let one number be x then other number is 27 - x x(27 - x) = 50 $27x - x^2 = 50$ $x^2 - 27x + 50 = 0$ (x - 25)(x - 2) = 0 x = 25 or $x = 2Numbers (25, 2)Let us assume, to the contrary that \sqrt{p} isrational.So, we can find co-prime integers 'a' and 'b'(b \neq 0),such that \sqrt{p} = \frac{a}{b}\Rightarrow \sqrt{p} b = a\Rightarrow pb^2 = a^2(i)\Rightarrow a^2 is divisible by pSo, we can write a = pc for some integer c.Therefore, a^2 = p^2c^2 (squaring both side)\Rightarrow pb^2 = pc^2\Rightarrow b^2 is divisible by p\Rightarrow b is divisible by p\Rightarrow b^2 = pc^2\Rightarrow b^2 is divisible by p\Rightarrow b b is divisible by p\Rightarrow b b b b b b b b b b b b b b b b b b b$

2.	: The tangents drawn to a circle from an external point are equal.
	\therefore AP = AC, Join OC
	In $\triangle PAO$ and $\triangle CAO$, we have:
	AO = AO [Common]
	OP = OC [Radii of the same circle]
	AP = AC [Proved above]
	$\Rightarrow \Delta PAO \cong \Delta AOC$ [SSS congruency]
	$\therefore \angle PAO = \angle CAO$
	$\Rightarrow \angle PAC = 2\angle CAO \qquad \dots (1)$
	Similarly $\angle CBQ = 2\angle CBO \dots (2)$
	Again, we know that sum of internal anngles on the same side of a transversal is 180°.
	$\therefore \angle PAC + \angle CBQ = 180^{\circ}$
	$\Rightarrow 2\angle CAO + 2\angle CBO = 180^{\circ}$
	[From (1) and (2)]
	$\Rightarrow \angle CAO + \angle CBO = \frac{180^{\circ}}{2} = 90^{\circ} \qquad \dots (3)$
	Also in $\triangle AOB$, $\angle BAO + \angle ABO + \angle AOB = 180^{\circ}$
	[Sum of angles of a triangle]
	$\Rightarrow \angle CAO + \angle CBO + \angle AOB = 180^{\circ} [By (3)]$
	$\Rightarrow 90^{\circ} + \angle AOB = 180^{\circ}$
	$\Rightarrow \angle AOB = 180^\circ - 90^\circ$
	$\Rightarrow \angle AOB = 90^{\circ}.$

SECTION-D

Your Hard Work Leads to Strong Foundation

MATHEMATICS

33. Let P and Q be the two positions of the plane and let A be point of observation. Let ABC be the horizontal line through A. It is given that angles of elevation of the plane in two positions P and Q from a point A are 60° and 30° respectively.

 $\therefore \angle PAB = 60^{\circ}, \angle QAB = 30^{\circ}$

It is also given that PB = $3600\sqrt{3}$ m

In $\triangle ABP$, we have

 $\tan 60^\circ = \frac{PB}{AB}$

$$\sqrt{3} = \frac{3600\sqrt{3}}{AB} \Rightarrow AB = 3600 \text{ m}$$

In $\triangle ACQ$,

 $\tan 30^\circ = \frac{\text{QC}}{\text{AC}}$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{3600\sqrt{3}}{\text{AC}}$$

- $\Rightarrow AC = 10800 \text{ m}$
- $\therefore PQ = BC = AC AB = 10800 \text{ m} 3600 \text{ m}$

Thus the plane travels 7200 m in for 30 seconds.

Hence, speed of plane = $\frac{7200}{30}$ = 240 m/s

$$=\frac{240}{1000} \times 60 \times 60 = 864$$
 km/hr

Let AD be the height (h) of the light house and BC is the distance between the ships and DC = x(let)

Given, BC = 100 m

$$\tan 45^\circ = \frac{h}{x}$$

 $\Rightarrow x = h$

In
$$\triangle ABD$$
, $\tan 30^\circ = \frac{h}{100 - DC}$

$$\implies \frac{1}{\sqrt{3}} = \frac{h}{100 - x}$$

$$\therefore 100 - x = h\sqrt{3}$$

$$100 - h = h\sqrt{3}$$

$$100 - h = h\sqrt{3}$$

$$\Rightarrow 100 = h + h\sqrt{3}$$
 [By (i)]

$$\Rightarrow 100 = h(1 + \sqrt{3})$$

$$h = \frac{100}{1 + \sqrt{3}}$$

$$\Rightarrow h = \frac{100(\sqrt{3}-1)}{3-1}$$

MATHEMATICS

- $= 50(\sqrt{3} 1)$
- = 50(1.732 1)
- $= 50 \times 0.732$
- \therefore Height of tower = 36.6 m
- 34. We have,

Volume of ice-cream in the container shaped like a right circular cylinder having radius 6 cm and height 15 cm = $\pi \times 6^2 \times 15$ cm³

Volume of one ice-cream cone shown in figure

$$= \left\{ \frac{2}{3}\pi \times 3^3 + \frac{1}{3}\pi \times 3^2 \times 12 \right\} \mathrm{cm}^2$$

 $= (18\pi + 36\pi) \text{ cm}^3 = 54\pi \text{ cm}^3$

Let the total number of cones that can be filled with the ice-cream given in the container be n. Then,

Volume of ice-cream in n cones = Volume of ice-cream in the container

$$\Rightarrow 54\pi \times n = \pi \times 36 \times 15$$

$$\Rightarrow$$
 n = $\frac{\pi \times 36 \times 15}{54\pi}$ = 10

35. The frequency distribution table of the given data can be drawn as :

Class	x _i	\mathbf{f}_{i}	$f_i x_i$	cf
0 - 50	25	2	50	2
50 - 100	75	3	225	5
100 – 150	125	5	625	10
150 - 200	175	6	1050	16
200 - 250	225	5	1125	21
250 - 300	275	3	825	24
300 - 350	325	1	325	25
		$\Sigma f_i = 25$	$\sum f_i x_i$	
			=4225	

Mean =
$$\frac{\sum f_i x_i}{\sum f_i} = \frac{4225}{25} = 169$$

Median =
$$\ell + \left[\frac{\frac{n}{2} - cf}{f}\right] \times h$$

Since, $\frac{\sum f_i}{2} = \frac{n}{2} = \frac{25}{2} = 12.5$. This observation

lies in the class 150 - 200.

: Lower limit of median class $(\ell) = 150$

Class size (h) = 50

Cumulative frequency (cf) = 10

Frequency of median class (f) = 6

:. Median =
$$150 + \left[\frac{\frac{25}{2} - 10}{6}\right] \times 50 = 150 + \left[\frac{2.5}{6}\right] \times 50$$

MATHEMATICS

= 150 + 20.83 = 170.83

Mode = 3 Median - 2 Mean

$$= 3 (170.83) - 2(169) = 512.49 - 338 = 174.49$$

OR

C.I.	f _i	c.f.	x _i	$\mathbf{u}_{i} = \frac{\mathbf{x}_{i} - \mathbf{a}}{\mathbf{h}}$	f _i u _i
05 – 07	70	70	6	-3	-210
07 – 09	120	190	8	-2	-240
09 – 11	32	222	10	-1	-32
11 – 13	100	322	12	0	0
13 – 15	45	367	14	1	45
15 – 17	28	395	16	2	56
17 – 19	5	400	18	3	15
	$\Sigma f = 400$				$\Sigma f_i u_i = -366$

a = Assumed mean = 12

Mean,
$$\overline{\mathbf{x}} = \mathbf{a} + \frac{\sum \mathbf{f}_i \mathbf{u}_i}{\sum \mathbf{f}_i} \times \mathbf{h}$$

Mean =
$$12 + \frac{-366}{400} \times 2 = 10.17$$

$$\frac{\sum f}{2} = 200 \Rightarrow Median class = 09 - 11$$

Median =
$$\ell + \left(\frac{\frac{n}{2} - c.f.}{f}\right) \times h$$

 $\Rightarrow \text{Median} = 9 + \frac{200 - 190}{32} \times 2 = 9.625$

37.

CLASS - X STANDARD (CBSE SAMPLE PAPER)

MATHEMATICS

OR Volume of water in sump = 1500 litres = 1500 litres $= 1.5 \text{ m}^3$ Then, $V = \ell bh$ $1.57 \times 1.44 \times h = 1.5$ $h = \frac{1.5}{1.57 \times 1.44} = 0.663 \text{ m}$ = 66.3 cmSuppose two cars meet at point Q. (i) Then, Distance travelled by car X = AQ. Distance travelled by car Y = BQ. It is given that two cars meet in 9 hours Distance travelled by car X in 9 hours = 9x km = AQ = 9xDistance travelled by car Y in 9 hours = 9y km = BQ = 9y90 km 38. Clearly, AQ - BQ = AB $\Rightarrow 9x - 9y = 90$ $\Rightarrow x - y = 10$ OR Suppose two cars meet at point P. Then Distance travelled by car X = APand Distance travelled by car Y = BP. In this case, two cars meet in $\frac{9}{7}$ hours $=\frac{9}{7}$ xkm $\Rightarrow AP = \frac{9}{7}x$

Distance travelled by car Y in $\frac{9}{7}$ hours $=\frac{9}{7}$ y km Clearly, AP + BP = AB $\Rightarrow \frac{9}{7}x + \frac{9}{7}y = 90$ $\Rightarrow \frac{9}{7}(x + y) = 90$ $\Rightarrow x + y = 70$ (ii) We have x - y = 10 $\Rightarrow x + y = 70$ Adding equations (i) and (ii), we get 2x = 80 $\Rightarrow x = 40$ Hence, speed of car X is 40 km/hr. (iii) We have x - y = 10 $\Rightarrow 40 - y = 10$ \Rightarrow y = 30 Hence, speed of car Y is 30 km/hr (i) Scale factor = $\frac{AC}{AE}$ $=\frac{AC}{AC+CE}=\frac{8}{8+4}$ $=\frac{8}{12}=\frac{2}{3}$ (ii) Since, $\Delta EBC \sim \Delta EFA$ $\frac{\text{EC}}{\text{EA}} = \frac{\text{BC}}{\text{AF}}$ $\Rightarrow \frac{4}{12} = \frac{3.6}{AF}$ $\Rightarrow AF = 3.6 \times 3$ = 10.8 cm

Your Hard Work Leads to Strong Foundation

ALLEN PRE-NURTURE & CARE	PRE-NURTURE & CAREER FOUNDATION DIVISION				
(iii) $\triangle ABC \sim \triangle ADE$	OR				
$\frac{AC}{AE} = \frac{BC}{DE}$	$\frac{AB}{BD} = \frac{AC}{CE}$				
$\frac{8}{12} = \frac{3.6}{DE}$	$\frac{AB}{BD} = \frac{8}{4}$				
$DE = \frac{3.6 \times 3}{2} = 5.4 \text{ cm}$	$\frac{AB}{BD} = \frac{2}{1}$				