JEE(ADVANCED)-2024 (EXAMINATION)

(Held On Sunday 26th MAY, 2024)

PHYSICS

TEST PAPER WITH ANSWER AND SOLUTION

PAPER-1

SECTION-1 : (Maximum Marks : 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $:+3$ If ONLY the correct option is chosen;
Zero Marks $\quad: 0$ If none of the options is chosen (i.e. the question is unanswered);
Negative Marks $:-1 \quad$ In all other cases.

1. A dimensionless quantity is constructed in terms of electronic charge e, permittivity of free space ε_{0}, Planck's constant h, and speed of light c. If the dimensionless quantity is written as $\mathrm{e}^{\alpha} \varepsilon_{0}{ }^{\beta} h^{\gamma} \mathrm{c}^{\delta}$ and n is a non-zero integer, then $(\alpha, \beta, \gamma, \delta)$ is given by
(A) $(2 n,-n,-n,-n)$
(B) $(n,-n,-2 n,-n)$
(C) $(n,-n,-n,-2 n)$
(D) $(2 n,-n,-2 n,-2 n)$

Ans. (A)
Sol. For the quantity to be dimensionless
$e^{\alpha} \varepsilon_{0}^{\beta} h^{\gamma} c^{d}=M^{0} L^{0} T^{0} A^{0}$
$\Rightarrow(\mathrm{AT})^{\alpha}\left(\mathrm{M}^{-1} \mathrm{~L}^{-3} \mathrm{~T}^{4} \mathrm{~A}^{2}\right)^{\beta}\left(\mathrm{ML}^{2} \mathrm{~T}^{-1}\right)^{\gamma}\left(\mathrm{LT}^{-1}\right)^{\delta}=\mathrm{A}^{0} \mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}$
$\therefore \alpha+2 \beta=0, \alpha+4 \beta-\gamma-\delta=0,-\beta+\gamma=0 \&-3 \beta+2 \gamma+\delta=0$
$\therefore \alpha=-2 \beta, \beta=\gamma \& \gamma=\delta$
\therefore Option (A) satisfies the given condition
2. An infinitely long wire, located on the z-axis, carries a current I along the $+z$-direction and produces the magnetic field $\overrightarrow{\mathrm{B}}$. The magnitude of the line integral $\int \overrightarrow{\mathrm{B}} . \overrightarrow{d l}$ along a straight line from the point $(-\sqrt{3} \mathrm{a}, \mathrm{a}, 0)$ to $(a, a, 0)$ is given by
[μ_{0} is the magnetic permeability of free space.]
(A) $7 \mu_{0} I / 24$
(B) $7 \mu_{0} I / 12$
(C) $\mu_{0} I / 8$
(D) $\mu_{0} I / 6$

Ans. (A)

Sol.

$$
\begin{aligned}
& \overrightarrow{\mathrm{B}} \\
& \Rightarrow|\overrightarrow{\mathrm{~d} \ell}|=\mathrm{rd} \theta \\
& \Rightarrow|\overrightarrow{\mathrm{~B}}|=\frac{\mu_{0} \mathrm{I}}{2 \pi \mathrm{r}} \\
& \Rightarrow \int \overrightarrow{\mathrm{~B}} \cdot \overrightarrow{\mathrm{~d} \ell}=\int|\overrightarrow{\mathrm{B}}||\overrightarrow{\mathrm{d} \ell}| \cos 0^{\circ} \\
& =\int\left(\frac{\mu_{0} \mathrm{I}}{2 \pi \mathrm{r}}\right) \times(\mathrm{rd} \theta) \\
& =\int_{\theta_{1}}^{\theta_{2}} \frac{\mu_{0} \mathrm{I}}{2 \pi} \mathrm{~d} \theta=\frac{\mu_{0} \mathrm{I}}{2 \pi}\left[\theta_{2}-\left(-\theta_{1}\right)\right]
\end{aligned}
$$

[θ_{1} is anticlockwise hence taken negative]

$\Rightarrow \tan \theta_{1}=\frac{\mathrm{a} \sqrt{3}}{\mathrm{a}}=\sqrt{3}$
$\theta_{1}=\frac{\pi}{3}$
$\Rightarrow \tan \theta_{2}=\frac{a}{a}=1$
$\theta_{2}=\frac{\pi}{4}$
$\Rightarrow \int \mathrm{B} \cdot \mathrm{d} \ell=\frac{\mu_{0} \mathrm{I}}{2 \pi}\left[\frac{\pi}{3}+\frac{\pi}{4}\right]$
$=\frac{7 \mu_{0} \mathrm{I}}{24}$
\Rightarrow Ans. Option (A)
3. Two beads, each with charge q and mass m, are on a horizontal, frictionless, non-conducting, circular hoop of radius R. One of the beads is glued to the hoop at some point, while the other one performs small oscillations about its equilibrium position along the hoop. The square of the angular frequency of the small oscillations is given by [ε_{0} is the permittivity of free space]
(A) $q^{2} /\left(4 \pi \varepsilon_{0} R^{3} m\right)$
(B) $q^{2} /\left(32 \pi \varepsilon_{0} R^{3} m\right)$
(C) $q^{2} /\left(8 \pi \varepsilon_{0} R^{3} m\right)$
(D) $q^{2} /\left(16 \pi \varepsilon_{0} R^{3} m\right)$

Ans. (B)

Sol.

Restoring force $=\mathrm{qE} \sin \left(\frac{\theta}{2}\right)$
$\therefore \tau=\mathrm{qE} \sin \left(\frac{\theta}{2}\right) \mathrm{R}=\mathrm{I} \alpha$
$\mathrm{E}=\frac{\mathrm{Kq}}{\left(2 \mathrm{R} \cos \frac{\theta}{2}\right)^{2}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{4 \mathrm{R}^{2} \cos ^{2}\left(\frac{\theta}{2}\right)}$
$\therefore \frac{1}{4 \pi \epsilon_{0}} \frac{q R}{4 R^{2} \cos ^{2}\left(\frac{\theta}{2}\right)} \sin \left(\frac{\theta}{2}\right) q=m R^{2} \alpha$
For θ very small,
$\frac{-q^{2}}{32 \pi \varepsilon_{0} R^{3} m} \theta=\alpha$
$\therefore \omega^{2}=\frac{\mathrm{q}^{2}}{32 \pi \varepsilon_{0} \mathrm{mR}^{3}}$
Hence option (B)
4. A block of mass 5 kg moves along the x-direction subject to the force $F=(-20 x+10) \mathrm{N}$, with the value of x in metre. At time $t=0 \mathrm{~s}$, it is at rest at position $x=1 \mathrm{~m}$. The position and momentum of the block at $t=(\pi / 4) \mathrm{s}$ are
(A) $-0.5 \mathrm{~m}, 5 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(B) $0.5 \mathrm{~m}, 0 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(C) $0.5 \mathrm{~m},-5 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(D) $-1 \mathrm{~m}, 5 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$

Ans. (C)
Sol. $\quad F=-20\left(x-\frac{1}{2}\right)=-20 X \quad\left(X=x-\frac{1}{2}\right)$
\therefore Particle will perform SHM about $\mathrm{x}=\frac{1}{2}$ with
$\omega=2 \mathrm{rad} / \mathrm{sec} \Rightarrow \mathrm{T}=\pi \mathrm{sec}$.
\therefore Phase covered in $\mathrm{t}=\frac{\pi}{4}$ second $=90^{\circ}$.
Given particle is at rest at $\mathrm{x}=1 \mathrm{~m} \Rightarrow \mathrm{x}=1$ is extreme position.
\therefore In $\frac{\pi}{4} \mathrm{sec}$, it will be at equilibrium
$\therefore \mathrm{x}=0.5 \mathrm{~m}$ and momentum $=\mathrm{m} \omega \mathrm{A}=5 \times 2 \times 0.5=5 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
Direction will be towards -ve x .
Hence option (C)

SECTION-2 : (Maximum Marks : 12)

- This section contains THREE (03) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+4$ ONLY if (all) the correct option(s) is(are) chosen;
Partial Marks : + 3 If all the four options are correct but ONLY three options are chosen;
Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct;
Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks :-2 In all other cases.

- For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then
choosing ONLY (A), (B) and (D) will get +4 marks;
choosing ONLY (A) and (B) will get +2 marks;
choosing ONLY (A) and (D) will get +2 marks;
choosing ONLY (B) and (D) will get +2 marks;
choosing ONLY (A) will get +1 marks;
choosing ONLY (B) will get +1 marks;
choosing ONLY (D) will get +1 marks;
choosing no option (i.e. the question is unanswered) will get 0 marks; and
choosing any other combination of options will get -2 marks.

5. A particle of mass m is moving in a circular orbit under the influence of the central force $\mathrm{F}(r)=-k r$, corresponding to the potential energy $V(r)=k r^{2} / 2$, where k is a positive force constant and r is the radial distance from the origin. According to the Bohr's quantization rule, the angular momentum of the particle is given by $L=n \hbar$, where $\hbar=h /(2 \pi), h$ is the Planck's constant, and n a positive integer. If v and E are the speed and total energy of the particle, respectively, then which of the following expression(s) is(are) correct?
(A) $r^{2}=n \hbar \sqrt{\frac{1}{m k}}$
(B) $v^{2}=n \hbar \sqrt{\frac{\mathrm{k}}{m^{3}}}$
(C) $\frac{L}{m r^{2}}=\sqrt{\frac{\mathrm{k}}{m}}$
(D) $\mathrm{E}=\frac{n \hbar}{2} \sqrt{\frac{\mathrm{k}}{m}}$

Ans. (A,B,C)
Sol. The central force will provide necessary centripetal force
$\Rightarrow \mathrm{kr}=\frac{\mathrm{mv}^{2}}{\mathrm{r}}$
or, $\mathrm{kr}^{2}=\mathrm{mv}^{2}$
By quantisation rule
$\mathrm{n} \hbar=\mathrm{mvr}$
or, $\frac{\mathrm{n} \hbar}{\mathrm{r}}=\mathrm{mv}$
$\frac{(1)}{(2)^{2}} \Rightarrow \frac{\mathrm{kr}^{2}}{\frac{\mathrm{n}^{2} \hbar^{2}}{\mathrm{r}^{2}}}=\frac{\mathrm{mv}^{2}}{\mathrm{~m}^{2} \mathrm{v}^{2}}$
$\Rightarrow \frac{\mathrm{k}}{\mathrm{n}^{2} \hbar^{2}} \mathrm{r}^{4}=\frac{1}{\mathrm{~m}}$
$\Rightarrow \mathrm{r}=\left(\frac{\mathrm{n}^{2} \hbar^{2}}{\mathrm{~km}}\right)^{\frac{1}{4}} \Rightarrow \mathrm{r}^{2}=\frac{\mathrm{n} \hbar}{\sqrt{\mathrm{mk}}}$
(B) Using (1), K $\cdot \frac{\mathrm{n} \hbar}{\sqrt{\mathrm{mk}}}=\mathrm{mv}^{2}$
$\Rightarrow \mathrm{v}^{2}=\mathrm{n} \hbar \sqrt{\frac{\mathrm{k}}{\mathrm{m}^{3}}}$
(C) $\frac{\mathrm{L}}{\mathrm{mr}^{2}}=\frac{\mathrm{mvr}}{\mathrm{mr}^{2}}=\frac{\mathrm{v}}{\mathrm{r}}=\sqrt{\frac{\mathrm{k}}{\mathrm{m}}}$ from (1)
(D) $\mathrm{E}=\frac{1}{2} \mathrm{mv}^{2}+\frac{1}{2} \mathrm{kr}^{2}=\frac{\mathrm{n} \hbar}{2} \sqrt{\frac{\mathrm{k}}{\mathrm{m}}}+\frac{1}{2} \mathrm{k} \frac{\mathrm{n} \hbar}{\sqrt{\mathrm{mk}}}$

$$
\mathrm{E}=\mathrm{n} \hbar \sqrt{\frac{\mathrm{k}}{\mathrm{~m}}}
$$

6. Two uniform string of mass per unit length μ and 4μ, and length L and $2 L$, respectively, are joined at point O , and tied at two fixed ends P and Q , as shown in the figure. The strings are under a uniform tension T. If we define the frequency $v_{0}=\frac{1}{2 \mathrm{~L}} \sqrt{\frac{\mathrm{~T}}{\mu}}$, which of the following statement(s) is (are) correct?

(A) With a node at O , the minimum frequency of vibration of the composite string is v_{0}.
(B) With an antinode at O , the minimum frequency of vibration of the composite string is $2 v_{0}$.
(C) When the composite string vibrates at the minimum frequency with a node at O , it has 6 nodes, including the end nodes.
(D) No vibrational mode with an antinode at O is possible for the composite string.

Ans. (A,C,D)

Sol.

$\mathrm{C}_{1}=\sqrt{\frac{\mathrm{T}}{\mu}}, \mathrm{C}_{2}=\sqrt{\frac{\mathrm{T}}{4 \mu}}=\frac{\mathrm{C}_{1}}{2}$

For node at O :

$\mathrm{L}=\frac{\mathrm{n} \lambda_{1}}{2}, 2 \mathrm{~L}=\frac{\mathrm{m} \lambda_{2}}{2}$ (n, m are integers)
$\lambda_{1}=\frac{2 \mathrm{~L}}{\mathrm{n}}, \lambda_{2}=\frac{4 \mathrm{~L}}{\mathrm{~m}}$
$\frac{\mathrm{C}_{1}}{\lambda_{1}}=\frac{\mathrm{C}_{2}}{\lambda_{2}}$
$\Rightarrow \frac{\mathrm{C}_{1}}{\frac{2 \mathrm{~L}}{\mathrm{n}}}=\frac{\frac{\mathrm{C}_{1}}{2}}{\frac{4 \mathrm{~L}}{\mathrm{~m}}}$
$\Rightarrow 4 \mathrm{n}=\mathrm{m}$
For minimum frequency, $\mathrm{n}=1, \mathrm{~m}=4$
$\therefore v_{\text {min }}=\frac{\mathrm{C}_{1} \times 1}{2 \mathrm{~L}}=\frac{1}{2 \mathrm{~L}} \sqrt{\frac{\mathrm{~T}}{\mu}}=v_{0}$
The string will look like

Total no. of nodes $=6$ including the end nodes
For antinode at O :

$$
\begin{aligned}
& \mathrm{L}=(2 \mathrm{n}+1) \frac{\lambda_{1}}{4} ; 2 \mathrm{~L}=(2 \mathrm{n}+1) \frac{\lambda_{2}}{4} \quad(\mathrm{n}, \mathrm{~m} \text { are integers }) \\
& \lambda_{1}=\frac{4 \mathrm{~L}}{(2 \mathrm{n}+1)} ; \lambda_{2}=\frac{8 \mathrm{~L}}{(2 \mathrm{~m}+1)} \\
& \frac{\mathrm{C}_{1}}{\lambda_{1}}=\frac{\mathrm{C}_{2}}{\lambda_{2}} \\
& \frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}=\frac{\lambda_{1}}{\lambda_{2}} \\
& 2=\frac{\frac{4 \mathrm{~L}}{(2 \mathrm{n}+1)}}{\frac{8 \mathrm{~L}}{(2 \mathrm{~m}+1)}}
\end{aligned}
$$

$$
4=\frac{(2 m+1)}{(2 n+1)} \Rightarrow \text { even }=\frac{\text { odd }}{\text { odd }} \Rightarrow \text { This node is not possible }
$$

7. A glass beaker has a solid, plano-convex base of refractive index 1.60, as shown in the figure. The radius of curvature of the convex surface (SPU) is 9 cm , while the planar surface (STU) acts as a mirror. This beaker is filled with a liquid of refractive index n up to the level QPR. If the image of a point object O at a height of h (OT in the figure) is formed onto itself, then, which of the following option(s) is(are) correct?

(A) For $n=1.42, h=50 \mathrm{~cm}$.
(B) For $n=1.35, h=36 \mathrm{~cm}$.
(C) For $n=1.45, h=65 \mathrm{~cm}$.
(D) For $n=1.48, h=85 \mathrm{~cm}$.

Ans. (A,B)
Sol. Since STU is a plane mirror, we can take mirror image of the whole situation about it and final image can be assumed to be at a distance h below the base.

Since object and image are at same distance from equivalent lens, hence $h=2 F_{\text {eq }}$
$\frac{1}{\mathrm{~F}_{\text {eq }}}=\left(\frac{1.6-1}{1}\right)\left(\frac{2}{9}\right)+\frac{(\mathrm{n}-1)}{1}\left(\frac{-2}{9}\right)$
$\frac{1}{\frac{\mathrm{~h}}{2}}=\frac{1.2}{9}+\frac{2(1-\mathrm{n})}{9}$
$\frac{2}{h}=\frac{3.2-2 n}{9}$
$\mathrm{h}=\frac{9}{1.6-\mathrm{n}} \mathrm{cm}$
(A) for $\mathrm{n}=1.42, \mathrm{~h}=50 \mathrm{~cm}$
(B) for $\mathrm{n}=1.35, \mathrm{~h}=36 \mathrm{~cm}$
(C) for $\mathrm{n}=1.45, \mathrm{~h}=60 \mathrm{~cm}$
(D) for $\mathrm{n}=1.48, \mathrm{~h}=75 \mathrm{~cm}$

SECTION-3 : (Maximum Marks : 24)

- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 ONLY If the correct integer is entered;
Zero Marks : 0 In all other cases.
8. The specific heat capacity of a substance is temperature dependent and is given by the formula $C=k T$, where k is a constant of suitable dimensions in SI units, and T is the absolute temperature. If the heat required to raise the temperature of 1 kg of the substance from $-73^{\circ} \mathrm{C}$ to $27^{\circ} \mathrm{C}$ is $\mathrm{n} k$, the value of n is \qquad .
[Given : $0 \mathrm{~K}=-273{ }^{\circ} \mathrm{C}$.]
Ans. (25000)
Sol. $\quad \mathrm{T}_{\mathrm{i}}=-73^{\circ} \mathrm{C}=200 \mathrm{~K}$
$\mathrm{T}_{\mathrm{f}}=27^{\circ} \mathrm{C}=300 \mathrm{~K}$
$\mathrm{Q}=\int \mathrm{msdT}$
$=\int 1 \cdot \mathrm{kT} \mathrm{dT}$
$=\int \mathrm{kT} \mathrm{dT}=\mathrm{K} \int_{200}^{300} \mathrm{~T} \mathrm{dT}$
$=\frac{\mathrm{K}}{2}\left[\mathrm{~T}^{2}\right]_{200}^{300}=\frac{\mathrm{K}}{2}\left[300^{2}-200^{2}\right]$
$\mathrm{Q}=25000 \mathrm{~K}$
Hence $\eta=25000$
9. A disc of mass M and radius R is free to rotate about its vertical axis as shown in the figure. A battery operated motor of negligible mass is fixed to this disc at a point on its circumference. Another disc of the same mass M and radius $R / 2$ is fixed to the motor's thin shaft. Initially, both the discs are at rest. The motor is switched on so that the smaller disc rotates at a uniform angular speed ω. If the angular speed at which the large disc rotates is ω / n, then the value of n is \qquad .

Ans. (12)

Sol.

On applying conservation of angular momentum about axis of larger disc.
$\frac{1}{2} \cdot \mathrm{M}\left(\frac{\mathrm{R}}{2}\right)^{2} \cdot \omega-\mathrm{M}\left(\omega^{\prime} \mathrm{R}\right) \cdot \mathrm{R}-\frac{\mathrm{MR}^{2}}{2} \cdot \omega^{\prime}=0$
$\Rightarrow \frac{\omega}{8}=\frac{3 \omega^{\prime}}{2}$
$\Rightarrow \omega^{\prime}=\frac{\omega}{12} \quad$ Hence, $\mathrm{n}=12$
10. A point source S emits unpolarized light uniformly in all directions. At two points A and B, the ratio $r=I_{A} / I_{B}$ of the intensities of light is 2 . If a set of two polaroids having 45° angle between their pass-axes is placed just before point B , then the new value of r will be \qquad .
Ans. (8)
Sol. New intensity at B
$\mathrm{I}_{\mathrm{B}}^{\prime}=\left(\frac{\mathrm{I}_{\mathrm{B}}}{2}\right) \cos ^{2} 45^{\circ}=\frac{\mathrm{I}_{\mathrm{B}}}{4}$
New value of $\alpha=\frac{\mathrm{I}_{\mathrm{A}}}{\frac{\mathrm{I}_{\mathrm{B}}}{4}}=\frac{4 \mathrm{I}_{\mathrm{A}}}{\mathrm{I}_{\mathrm{B}}}$
$=4 \times 2 ; \alpha=8$
11. A source (S) of sound has frequency 240 Hz . When the observer (O) and the source move towards each other at a speed v with respect to the ground (as shown in Case 1 in the figure), the observer measures the frequency of the sound to be 288 Hz . However, when the observer and the source move away from each other at the same speed v with respect to the ground (as shown in Case 2 in the figure), the observer measures the frequency of sound to be $n \mathrm{~Hz}$. The value of n is \qquad .

Case 1

Ans. (200)
Sol. Frequency received by observer
$f_{0}=\left(\frac{C \pm V_{0}}{C \pm V_{S}}\right) f_{s}, C$ is speed of sound

Case-1:

$\mathrm{f}_{1}=\left(\frac{\mathrm{C}+\mathrm{V}}{\mathrm{C}-\mathrm{V}}\right) \mathrm{f}_{\mathrm{s}}$
$288=\left(\frac{\mathrm{C}+\mathrm{V}}{\mathrm{C}-\mathrm{V}}\right) 240$

Case-2:

$\mathrm{f}_{2}=\left(\frac{\mathrm{C}-\mathrm{V}}{\mathrm{C}+\mathrm{V}}\right) \mathrm{f}_{\mathrm{s}}$
$\mathrm{n}=\left(\frac{\mathrm{C}-\mathrm{V}}{\mathrm{C}+\mathrm{V}}\right) 240$
multiply the two equations, we get.
(288) (n) $=(240)(240)$
$\mathrm{N}=200$
12. Two large, identical water tanks, 1 and 2 , kept on the top of a building of height H, are filled with water up to height h in each tank. Both the tanks contain an identical hole of small radius on their sides, close to their bottom. A pipe of the same internal radius as that of the hole is connected to tank 2, and the pipe ends at the ground level. When the water flows from the tanks 1 and 2 through the holes, the times taken to empty the tanks are t_{1} and t_{2}, respectively. If $H=\left(\frac{16}{9}\right) h$, then the ratio t_{1} / t_{2} is \qquad .

Ans. (3)

Sol.

$\mathrm{Av}=\mathrm{av}_{1}$

$$
A\left(-\frac{d y}{d t}\right)=a \sqrt{2 g y} ; d t=\frac{A}{a \sqrt{2 g}} \cdot \frac{-d y}{\sqrt{y}}
$$

$\int_{0}^{t} d t=\frac{A}{a \sqrt{2 g}} \int_{h}^{0}-\frac{d y}{\sqrt{y}}$
$\mathrm{t}_{1}=\frac{\mathrm{A}}{\mathrm{a} \sqrt{2 \mathrm{~g}}} 2 \sqrt{\mathrm{~h}} ; \mathrm{t}_{1}=\frac{\mathrm{A}}{\mathrm{a}} \sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}}$

$A v^{\prime}=a v_{2}$
$A\left(-\frac{d y}{d t}\right)=a \sqrt{2 g(H+y)}$
$\mathrm{dt}=-\frac{\mathrm{A}}{\mathrm{a} \sqrt{2 \mathrm{~g}}} \frac{\mathrm{dy}}{\sqrt{\mathrm{H}+\mathrm{y}}}$
$\int_{0}^{t} \mathrm{dt}=-\frac{\mathrm{A}}{\mathrm{a} \sqrt{2 \mathrm{~g}}} \int_{\mathrm{H}}^{0} \frac{\mathrm{dy}}{\sqrt{\mathrm{H}+\mathrm{y}}}$
$\mathrm{t}_{2}=\frac{\mathrm{A}}{\mathrm{a} \sqrt{2 \mathrm{~g}}}(2)(\sqrt{\mathrm{H}+\mathrm{h}}-\sqrt{\mathrm{H}}) \& \quad \mathrm{H}=\frac{16 \mathrm{~h}}{9}$
$=\frac{\mathrm{A}}{\mathrm{a}} \sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}}\left(\frac{5}{3}-\frac{4}{3}\right)$
$\mathrm{t}_{2}=\frac{\mathrm{A}}{\mathrm{a}} \sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}}\left(\frac{1}{3}\right)$
ratio $\frac{t_{1}}{t_{2}}=3$
13. A thin uniform rod of length L and certain mass is kept on a frictionless horizontal table with a massless string of length L fixed to one end (top view is shown in the figure). The other end of the string is pivoted to a point O . If a horizontal impulse P is imparted to the rod at a distance $x=L / n$ from the mid-point of the rod (see figure), then the rod and string revolve together around the point O, with the rod remaining aligned with the string. In such a case, the value of n is \qquad .

Ans. (18)
Sol. Linear impulse $\int F d t=\Delta$ momentum
$=\mathrm{m}\left(\mathrm{V}_{\mathrm{cm}}-0\right)$
$\mathrm{P}=\mathrm{m}\left(\omega \mathrm{r}_{\mathrm{cm}}\right)$
$=m \omega\left(\mathrm{~L}+\frac{\mathrm{L}}{2}\right)$
$\mathrm{P}=\mathrm{m} \omega\left(\frac{3 \mathrm{~L}}{2}\right)$
Angular impulse $\int \tau \mathrm{dt}=\Delta$ angular momentum
$\int \mathrm{r} \times \mathrm{Fdt}=\Delta \mathrm{L}$
$r \times \int \mathrm{Fdt}=\mathrm{I}(\omega-0)$, and I is moment of inertia about axis of rotation.

$$
\begin{align*}
& \left(\mathrm{L}+\frac{\mathrm{L}}{2}+\mathrm{x}\right) \times \mathrm{P}=\left(\mathrm{I}_{\mathrm{cm}}+\mathrm{md}^{2}\right) \omega \\
& =\left(\frac{\mathrm{mL}^{2}}{12}+\mathrm{m}\left(\mathrm{~L}+\frac{\mathrm{L}}{2}\right)^{2}\right) \omega \\
& \left(\frac{3 \mathrm{~L}}{2}+\mathrm{x}\right) \mathrm{P}=\mathrm{mL}^{2}\left(\frac{1}{12}+\left(\frac{3}{2}\right)^{2}\right) \omega \\
& \left(\frac{3 \mathrm{~L}}{2}+x\right) P=\mathrm{mL}^{2}\left(\frac{7}{3}\right) \omega \tag{ii}
\end{align*}
$$

Divide eq.-(i) \& (ii)

$$
\begin{aligned}
& \left(\frac{3 \mathrm{~L}}{2}+\mathrm{x}\right)=\frac{\mathrm{L}\left(\frac{7}{3}\right)}{\left(\frac{3}{2}\right)} \\
& \frac{3 \mathrm{~L}}{2}+\mathrm{x}=\mathrm{L}\left(\frac{14}{9}\right) \\
& \mathrm{x}=\frac{\mathrm{L}}{18}
\end{aligned}
$$

SECTION-4 : (Maximum Marks : 12)

- This section contains FOUR (04) Matching List Sets.
- Each set has ONE Multiple Choice Question.
- Each set has TWO lists : List-I and List-II.
- List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+3$ ONLY if the option corresponding to the correct combination is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks $\quad:-1$ In all other cases.
14. One mole of a monatomic ideal gas undergoes the cyclic process $\mathrm{J} \rightarrow \mathrm{K} \rightarrow \mathrm{L} \rightarrow \mathrm{M} \rightarrow \mathrm{J}$, as shown in the P-T diagram.

Match the quantities mentioned in List-I with their values in List-II and choose the correct option. [R is the gas constant.]

List-I

(P) Work done in the complete cyclic process
(Q) Change in the internal energy of the gas in the process JK
(R) Heat given to the gas in the process KL
(3) $3 R T_{0}$
(S) Change in the internal energy of the gas in the process MJ
(4) $-2 R T_{0} \ln 2$
(5) $-3 R T_{0} \ln 2$
(A) $\mathrm{P} \rightarrow 1 ; \mathrm{Q} \rightarrow 3 ; \mathrm{R} \rightarrow 5 ; \mathrm{S} \rightarrow 4$
(B) $\mathrm{P} \rightarrow 4 ; \mathrm{Q} \rightarrow 3 ; \mathrm{R} \rightarrow 5 ; \mathrm{S} \rightarrow 2$
(C) $\mathrm{P} \rightarrow 4 ; \mathrm{Q} \rightarrow 1 ; \mathrm{R} \rightarrow 2 ; \mathrm{S} \rightarrow 2$
(D) $\mathrm{P} \rightarrow 2 ; \mathrm{Q} \rightarrow 5 ; \mathrm{R} \rightarrow 3 ; \mathrm{S} \rightarrow 4$

Ans. (B)
Sol. $\quad \mathrm{J}\left(\mathrm{P}_{0}, \mathrm{~V}_{0}, \mathrm{~T}_{0}\right)$
$\mathrm{K}\left(\mathrm{P}_{0}, 3 \mathrm{~V}_{0}, 3 \mathrm{~T}_{0}\right)$
$\mathrm{M}\left(2 \mathrm{P}_{0}, \frac{\mathrm{~V}_{0}}{2}, \mathrm{~T}_{0}\right)$
$\mathrm{L}\left(2 \mathrm{P}_{0}, \frac{3 \mathrm{~V}_{0}}{2}, 3 \mathrm{~T}_{0}\right)$
$\mathrm{P}_{0} \mathrm{~V}_{0}=\mathrm{nRT}_{0}$
$\mathrm{JK} \rightarrow$ isobaric $\Rightarrow \mathrm{W}=\mathrm{P}_{0}\left(2 \mathrm{~V}_{0}\right)=2 \mathrm{nRT}_{0}$
$\Delta \mathrm{U}=\frac{3}{2} \mathrm{nR}\left(2 \mathrm{~T}_{0}\right)=3 \mathrm{nRT}_{0}$
$\mathrm{KL} \rightarrow$ isothermal $\rightarrow \mathrm{W}=\mathrm{nR}(3 \mathrm{~T}) \ln \left(\frac{1}{2}\right)=-3 \mathrm{nRT}_{0} \ln 2$
$\Delta \mathrm{U}=0 \Rightarrow \mathrm{Q}=-3 \mathrm{nRT}_{0} \ln 2$
$\mathrm{LM} \rightarrow$ isobaric $=2 \mathrm{P}_{0}\left(-\mathrm{V}_{0}\right)=-2 \mathrm{nRT}_{0}$
$\mathrm{MJ} \rightarrow$ isothermal $\Rightarrow \mathrm{nRT}_{0} \ln 2 ; \Delta \mathrm{U}=0$
$\mathrm{WD}_{\text {net }}=-2 \mathrm{nRT}_{0} \ln 2$
$\mathrm{P} \rightarrow 4, \mathrm{Q} \rightarrow 3, \mathrm{R} \rightarrow 5, \mathrm{~S} \rightarrow 2$
15. Four identical thin, square metal sheets, S_{1}, S_{2}, S_{3} and S_{4}, each of side a are kept parallel to each other with equal distance $d(\ll a)$ between them, as shown in the figure. Let $C_{0}=\varepsilon_{0} \mathrm{a}^{2} / \mathrm{d}$, where ε_{0} is the permittivity of free space.

Match the quantities mentioned in List-I with their values in List-II and choose the correct option.

List-I

(P) The capacitance between S_{1} and S_{4}, with S_{2} and S_{3} not connected, is
(Q) The capacitance between S_{1} and S_{4}, with S_{2} shorted to S_{3}, is
(R) The capacitance between S_{1} and S_{3}, with S_{2} shorted to S_{4}, is
(S) The capacitance between S_{1} and S_{2}, with
(4) $2 C_{0} / 3$
S_{3} shorted to S_{1}, and S_{2} shorted to S_{4}, is
(5) $2 C_{0}$
(A) P $\rightarrow 3 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 4 ; \mathrm{S} \rightarrow 5$
(B) $\mathrm{P} \rightarrow 2 ; \mathrm{Q} \rightarrow 3 ; \mathrm{R} \rightarrow 2 ; \mathrm{S} \rightarrow 1$
(C) $\mathrm{P} \rightarrow 3 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 4 ; \mathrm{S} \rightarrow 1$
(D) $\mathrm{P} \rightarrow 3 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 2 ; \mathrm{S} \rightarrow 5$

Ans. (C)

Sol.
(P) $\left.\left.\longrightarrow\right|_{3 d} ^{a^{2}}\right|^{4} \Rightarrow \mathrm{C}=\frac{\varepsilon_{0} \mathrm{q}^{2}}{3 \mathrm{~d}}=\frac{\mathrm{C}_{0}}{3}$

(R) $\left.\left.\left.\left.\right|^{1} 1^{\prime}{ }^{2}\right|^{2^{\prime}} 3\right|^{3 \prime}\right|^{4}$

(S)

16. A light ray is incident on the surface of a sphere of refractive index n at an angle of incidence θ_{0}. The ray partially refracts into the sphere with angle of refraction ϕ_{0} and then partly reflects from the back surface. The reflected ray then emerges out of the sphere after a partial refraction. The total angle of deviation of the emergent ray with respect to the incident ray is α. Match the quantities mentioned in List-I with their values in List-II and choose the correct option.

List-I

(P) If $n=2$ and $\alpha=180^{\circ}$, then all the possible values of θ_{0} will be
(Q) If $\mathrm{n}=\sqrt{3}$ and $\alpha=180^{\circ}$, then all the possible values of θ_{0} will be
(R) If $\mathrm{n}=\sqrt{3}$ and $\alpha=180^{\circ}$, then all the possible values of ϕ_{0} will be
(S) If $\mathrm{n}=\sqrt{2}$ and $\theta_{0}=45^{\circ}$, then all the possible values of α will be
(5) 0°
(A) $\mathrm{P} \rightarrow 5 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 1 ; \mathrm{S} \rightarrow 4$
(B) $\mathrm{P} \rightarrow 5 ; \mathrm{Q} \rightarrow 1 ; \mathrm{R} \rightarrow 2 ; \mathrm{S} \rightarrow 4$
(C) $\mathrm{P} \rightarrow 3 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 1 ; \mathrm{S} \rightarrow 4$
(D) $\mathrm{P} \rightarrow 3 ; \mathrm{Q} \rightarrow 1 ; \mathrm{R} \rightarrow 2 ; \mathrm{S} \rightarrow 5$

Ans. (A)

Sol.

$\alpha=\left(\theta_{0}-\phi_{0}\right)+\left(180-2 \phi_{0}\right)+\left(\theta_{0}-2 \phi_{0}\right)$
$\alpha=180+2 \theta_{0}-4 \phi_{0}$
(P) $\alpha=180+2 \theta_{0}-4 \phi_{0}$
$180=180+2 \theta_{0}-4 \phi_{0} \Rightarrow \theta_{0}=2 \phi_{0}$
$\sin \theta_{0}=2 \sin \phi_{0}$
From (i) \& (ii)
$\sin \theta_{0}=2 \sin \left(\theta_{0} / 2\right) \Rightarrow \cos \left(\frac{\theta_{0}}{2}\right)=1$
$\frac{\theta_{0}}{2}=0$
$\Rightarrow \theta_{0}=0$
(Q) $\theta_{0}=2 \phi_{0}$
$\sin \theta_{0}=\sqrt{3} \sin \phi_{0}$
From (i) \& (ii)
$\sin \theta_{0}=\sqrt{3} \sin \left(\frac{\theta_{0}}{2}\right)$
$\Rightarrow \cos \left(\frac{\theta_{0}}{2}\right)=\frac{\sqrt{3}}{2}$
$\frac{\theta_{0}}{2}=30,150$
$\theta_{0}=60,300$ (Rejected)
$\theta_{0}=60 \& 0$
(R) $\theta_{0}=2 \phi_{0}$
$\sin \theta_{0}=\sqrt{3} \sin \phi_{0}$
$\sin 2 \theta_{0}=\sqrt{3} \sin \phi_{0}$
$\cos \phi_{0}=\frac{\sqrt{3}}{2}$
$\phi_{0}=30,150$ (Rejected)
$\phi_{0}=30 \& 0$
(S) $\sin 45=\sqrt{2} \cos \phi_{0}$
$\cos \phi_{0}=1 / 2$
$\phi_{0}=60$
$\alpha=180+2 \theta_{0}-4 \phi_{0}$
$\alpha=180+90-120$
$=180-30 ; \alpha=150^{\circ}$
17. The circuit shown in the figure contains an inductor L, a capacitor C_{0}, a resistor R_{0} and an ideal battery. The circuit also contains two keys K_{1} and K_{2}. Initially, both the keys are open and there is no charge on the capacitor. At an instant, key K_{1} is closed and immediately after this the current in R_{0} is found to be I_{1}. After a long time, the current attains a steady state value I_{2}. Thereafter, K_{2} is closed and simultaneously K_{1} is opened and the voltage across C_{0} oscillates with amplitude V_{0} and angular frequency ω_{0}.

Match the quantities mentioned in List-I with their values in List-II and choose the correct option.

List-I

(P) The value of I_{1} in Ampere is
(Q) The value of I_{2} in Ampere is
(R) The value of ω_{0} in kilo-radians/s is
(S) The value of V_{0} in Volt is

List-II

(1) 0
(2) 2
(3) 4
(4) 20
(5) 200
(A) $\mathrm{P} \rightarrow 1 ; \mathrm{Q} \rightarrow 3 ; \mathrm{R} \rightarrow 2 ; \mathrm{S} \rightarrow 5$
(B) $\mathrm{P} \rightarrow 1 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 3 ; \mathrm{S} \rightarrow 5$
(C) $\mathrm{P} \rightarrow 1 ; \mathrm{Q} \rightarrow 3 ; \mathrm{R} \rightarrow 2 ; \mathrm{S} \rightarrow 4$
(D) $\mathrm{P} \rightarrow 2 ; \mathrm{Q} \rightarrow 5 ; \mathrm{R} \rightarrow 3 ; \mathrm{S} \rightarrow 4$

Ans. (A)

Sol. $\mathrm{R}_{0}=5 \Omega$

(P) When K_{1} is closed current in R_{0} is I_{1}

At $t=0$; circuit will be

$\mathrm{I}_{1}=0$
$\mathrm{P} \rightarrow(1)$
(Q) After long time inductor behave as a wire so I_{2}

$\mathrm{I}_{2}=\frac{20}{5}=4 \mathrm{~A}$
$\mathrm{Q} \rightarrow(3)$
(R) When K_{2} is closed and K_{1} open

$\omega_{0}=\frac{1}{\sqrt{\mathrm{LC}}}$
$\omega_{0}=\frac{1}{\sqrt{25 \times 10^{-3} \times 10 \times 10^{-6}}}=\frac{1}{5 \times 10^{-4}}$
$\omega_{0}=2 \times 10^{3} \mathrm{rad} / \mathrm{s}$
$\omega_{0}=2$ kilo-radian $/ \mathrm{s}$
$R \rightarrow(2)$
(S) Now K_{2} is closed and K_{1} open

$\frac{1}{2} \mathrm{LI}_{2}^{2}=\frac{1}{2} \mathrm{CV}_{0}^{2}$
$25 \times 10^{-3} \times(4)^{2}=10 \times 10^{-6} \times \mathrm{V}_{0}^{2}$
$\mathrm{V}_{0}^{2}=2500 \times 16$
$\mathrm{V}_{0}=50 \times 4=200 \mathrm{~V}$
$\mathrm{S} \rightarrow$ (5)

