JEE(ADVANCED)-2024 (EXAMINATION)

(Held On Sunday 26 ${ }^{\text {th }}$ MAY, 2024)

MATHEMATICS

TEST PAPER WITH ANSWER AND SOLUTION

PAPER-2

SECTION-1 : (Maximum Marks : 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+3$ If ONLY the correct option is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks :-1 In all other cases.

1. Considering only the principal values of the inverse trigonometric functions, the value of

$$
\tan \left(\sin ^{-1}\left(\frac{3}{5}\right)-2 \cos ^{-1}\left(\frac{2}{\sqrt{5}}\right)\right)
$$

is
(A) $\frac{7}{24}$
(B) $\frac{-7}{24}$
(C) $\frac{-5}{24}$
(D) $\frac{5}{24}$

Ans. (B)
Sol. $\tan \left(\tan ^{-1}\left(\frac{3}{4}\right)-2 \tan ^{-1}\left(\frac{1}{2}\right)\right)$
$\tan \left(\tan ^{-1}\left(\frac{3}{4}\right)-\tan ^{-1}\left(\frac{2 \times \frac{1}{2}}{1-\frac{1}{4}}\right)\right)$
$\tan \left(\tan ^{-1}\left(\frac{3}{4}\right)-\tan ^{-1}\left(\frac{4}{3}\right)\right)$
$\tan \left(\tan ^{-1}\left(\frac{\frac{3}{4}-\frac{4}{3}}{1+1}\right)\right)$
$\frac{9-16}{24}=\frac{-7}{24}$
2. Let $S=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}: \mathrm{x} \geq 0, y \geq 0, y^{2} \leq 4 x, y^{2} \leq 12-2 x\right.$ and $\left.3 y+\sqrt{8} x \leq 5 \sqrt{8}\right\}$. If the area of the region S is $\alpha \sqrt{2}$, then α is equal to
(A) $\frac{17}{2}$
(B) $\frac{17}{3}$
(C) $\frac{17}{4}$
(D) $\frac{17}{5}$

Ans. (B)

Sol.

Point of intersection of all curves is $(2,2 \sqrt{2})$
Area $=\mathrm{A}_{1}+\mathrm{A}_{2}$
$\alpha \sqrt{2}=\int_{0}^{2} 2 \sqrt{\mathrm{x}} \mathrm{dx}+\frac{1}{2} \times 3 \times 2 \sqrt{2}$
$\alpha \sqrt{2}=2\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{2}+3 \sqrt{2}$
$\alpha \sqrt{2}=\frac{17 \sqrt{2}}{3}$
$\alpha=\frac{17}{3}$
3. Let $k \in \mathbb{R}$. If $\lim _{x \rightarrow 0^{+}}(\sin (\sin k x)+\cos x+x)^{\frac{2}{x}}=\mathrm{e}^{6}$, then the value of k is
(A) 1
(B) 2
(C) 3
(D) 4

Ans. (B)
Sol. $\quad \lim _{x \rightarrow 0} \frac{2}{x}(\sin (\sin k x)+\cos x+x-1)=6$
$\lim _{x \rightarrow 0} \frac{\sin (\sin k x) \cdot \sin k x}{(\sin k x) k x} \cdot k+1-\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}} \cdot x=3$
$\mathrm{k}+1=3 \Rightarrow \mathrm{k}=2$
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)=\left\{\begin{array}{cl}
x^{2} \sin \left(\frac{\pi}{x^{2}}\right), & \text { if } x \neq 0 \\
0, & \text { if } x=0
\end{array}\right.
$$

Then which of the following statements is TRUE ?
(A) $f(x)=0$ has infinitely many solutions in the interval $\left[\frac{1}{10^{10}}, \infty\right)$.
(B) $f(x)=0$ has no solutions in the interval $\left[\frac{1}{\pi}, \infty\right)$.
(C) The set of solutions of $f(x)=0$ in the interval $\left(0, \frac{1}{10^{10}}\right)$ is finite.
(D) $f(x)=0$ has more than 25 solutions in the interval $\left(\frac{1}{\pi^{2}}, \frac{1}{\pi}\right)$.

Ans. (D)
Sol. Option-A : $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2} \sin \frac{\pi}{\mathrm{x}^{2}}$
$\mathrm{f}(\mathrm{x})=0 \Rightarrow \sin \frac{\pi}{\mathrm{x}^{2}}=0 \Rightarrow \frac{\pi}{\mathrm{x}^{2}}=\mathrm{n} \pi, \mathrm{n} \in \mathrm{N}$
$\mathrm{x}^{2}=\frac{1}{\mathrm{n}} \Rightarrow \mathrm{x}=\frac{1}{\sqrt{\mathrm{n}}}$
$\frac{1}{\sqrt{\mathrm{n}}} \geq \frac{1}{10^{10}} \Rightarrow 10^{10} \geq \sqrt{\mathrm{n}} \Rightarrow \mathrm{n} \leq 10^{20}$, finite number of solutions
Option-B : $\mathrm{x}=\frac{1}{\sqrt{\mathrm{n}}} \Rightarrow \frac{1}{\sqrt{\mathrm{n}}}>\frac{1}{\pi} \Rightarrow \pi>\sqrt{\mathrm{n}} \Rightarrow \mathrm{n}<\pi^{2}$, Number of solutions is 9
Option-C : $\mathrm{x}=\frac{1}{\sqrt{\mathrm{n}}}, \frac{1}{\sqrt{\mathrm{n}}}<\frac{1}{10^{10}} \Rightarrow \sqrt{\mathrm{n}}>10^{10} \Rightarrow \mathrm{n}>10^{20}$, Infinite number of solutions
Option-D : $\frac{1}{\pi^{2}}<\frac{1}{\sqrt{\mathrm{n}}}<\frac{1}{\pi} \Rightarrow \sqrt{\mathrm{n}} \in\left(\pi, \pi^{2}\right) \Rightarrow \mathrm{n} \in\left(\pi^{2}, \pi^{4}\right)$, Definitely more than 25 solutions

SECTION-2 : (Maximum Marks : 12)

- This section contains THREE (03) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+4$ ONLY if (all) the correct option(s) is(are) chosen;
Partial Marks : + 3 If all the four options are correct but ONLY three options are chosen;
Partial Marks $\quad:+2$ If three or more options are correct but ONLY two options are chosen, both of which are correct;
Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;
Zero Marks : 0 If unanswered;
Negative Marks : - 2 In all other cases.

- For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then
choosing ONLY (A), (B) and (D) will get +4 marks;
choosing ONLY (A) and (B) will get +2 marks;
choosing ONLY (A) and (D) will get +2 marks;
choosing ONLY (B) and (D) will get +2 marks;
choosing ONLY (A) will get +1 marks;
choosing ONLY (B) will get +1 marks;
choosing ONLY (D) will get +1 marks;
choosing no option (i.e. the question is unanswered) will get 0 marks and
choosing any other option(s) will get -2 marks.

5. Let S be the set of all $(\alpha, \beta) \in \mathbb{R} \times \mathbb{R}$ such that

$$
\lim _{x \rightarrow \infty} \frac{\sin \left(x^{2}\right)\left(\log _{\mathrm{e}} x\right)^{\alpha} \sin \left(\frac{1}{x^{2}}\right)}{x^{\alpha \beta}\left(\log _{\mathrm{e}}(1+x)\right)^{\beta}}=0 .
$$

Then which of the following is (are) correct?
(A) $(-1,3) \in S$
(B) $(-1,1) \in S$
(C) $(1,-1) \in S$
(D) $(1,-2) \in S$

Ans. (B,C)
Sol. $\quad \lim _{x \rightarrow \infty} \frac{\sin x^{2} \cdot\left(\log _{e} x\right)^{\alpha} \cdot \sin \frac{1}{x^{2}}}{x^{\alpha \beta} \cdot\left(\log _{e}(1+x)\right)^{\beta}}=0$
$\lim _{x \rightarrow \infty} \frac{\left(\log _{e} x\right)^{\alpha}}{\left(\log _{e}(x+1)\right)^{\beta} \cdot x^{\alpha \beta+2}}=0$
$\lim _{x \rightarrow \infty}\left(\frac{\log _{e} x}{\log _{e}(x+1)}\right)^{\beta} \cdot \frac{\left(\log _{e} x\right)^{\alpha-\beta}}{x^{\alpha \beta+2}}=0$
$\lim _{\mathrm{x} \rightarrow \infty} \frac{\left(\log _{\mathrm{e}} \mathrm{x}\right)^{\alpha-\beta}}{\mathrm{x}^{\alpha \beta+2}}=0 \quad$ Put $\log _{\mathrm{e}} \mathrm{x}=\mathrm{t}$
$\lim _{t \rightarrow \infty} \frac{t^{\alpha-\beta}}{\left(e^{t}\right)^{\alpha \beta+2}}=0$
As we know $\lim _{x \rightarrow \infty} \frac{x}{e^{x}}=0$
$\alpha \beta+2>0 \Rightarrow \alpha \beta>-2$
6. A straight line drawn from the point $P(1,3,2)$, parallel to the line $\frac{x-2}{1}=\frac{y-4}{2}=\frac{z-6}{1}$, intersects the plane $L_{1}: x-y+3 \mathrm{z}=6$ at the point Q. Another straight line which passes through Q and is perpendicular to the plane L_{1} intersects the plane $L_{2}: 2 x-y+\mathrm{z}=-4$ at the point R.
Then which of the following statements is (are) TRUE?
(A) The length of the line segment $P Q$ is $\sqrt{6}$
(B) The coordinates of R are $(1,6,3)$
(C) The centroid of the triangle $P Q R$ is $\left(\frac{4}{3}, \frac{14}{3}, \frac{5}{3}\right)$
(D) The perimeter of the triangle $P Q R$ is $\sqrt{2}+\sqrt{6}+\sqrt{11}$

Ans. (A,C)
Sol. line : $\frac{x-1}{1}=\frac{y-3}{2}=\frac{z-2}{1}$
$(\mathrm{x}, \mathrm{y}, \mathrm{z})=(\lambda+1,2 \lambda+3, \lambda+2)$
Put in $L_{1}: x-y+3 z=6$
$(\lambda+1)-(2 \lambda+3)+3(\lambda+2)=6$
$2 \lambda=2 \Rightarrow \lambda=1$
$\mathrm{Q}=(2,5,3)$
line : $\frac{x-2}{1}=\frac{y-5}{-1}=\frac{z-3}{3}$
$(\mathrm{x}, \mathrm{y}, \mathrm{z})=(\mathrm{t}+2,5-\mathrm{t}, 3 \mathrm{t}+3)$
Put in $L_{2}: 2 x-y+z=-4$
$2(t+4)-(5-t)+(3 t+3)=-4$
$6 \mathrm{t}=-6 \Rightarrow \mathrm{t}=-1$
$\mathrm{R}=(1,6,0)$
$\mathrm{P}=(1,3,2)$
$(2,5,3)$
$(1,6,0)$
Perimeter $=\sqrt{6}+\sqrt{13}+\sqrt{11}$
Centroid $=\left(\frac{4}{3}, \frac{14}{3}, \frac{5}{3}\right)$
7. Let A_{1}, B_{1}, C_{1} be three points in the $x y$-plane. Suppose that the lines $A_{1} C_{1}$ and $B_{1} C_{1}$ are tangents to the curve $y^{2}=8 x$ at A_{1} and B_{1}, respectively. If $O=(0,0)$ and $C_{1}=(-4,0)$, then which of the following statements is (are) TRUE?
(A) The length of the line segment $O A_{1}$ is $4 \sqrt{3}$
(B) The length of the line segment $A_{1} B_{1}$ is 16
(C) The orthocenter of the triangle $A_{1} B_{1} C_{1}$ is $(0,0)$
(D) The orthocenter of the triangle $A_{1} B_{1} C_{1}$ is $(1,0)$

Ans. (A,C)
Sol.

Equation of tangent at $\left(2 t^{2}, 4 t\right)$ is
$t y=x+2 t^{2}$
\because It is passing through $(-4,0)$
$\therefore 0=-4+2 \mathrm{t}^{2} \Rightarrow \mathrm{t}= \pm \sqrt{2}$
$\left.\therefore \mathrm{A}_{1}=(4,4 \sqrt{2})\right\} \quad \mathrm{OA}_{1}=\sqrt{48}=4 \sqrt{3}$
$\mathrm{B}_{1}=(4,-4 \sqrt{2}) \quad \mathrm{A}_{1} \mathrm{~B}_{1}=8 \sqrt{2}$
Equation of altitude of $\Delta A_{1} B_{1} C_{1}$ drawn from A_{1} is
$y-4 \sqrt{2}=\sqrt{2}(x-4)$
$\Rightarrow \sqrt{2} \mathrm{x}-\mathrm{y}=0$
Equation of altitude of $\Delta A_{1} B_{1} C_{1}$ drawn from C_{1} is

$$
\begin{equation*}
x=0 \tag{2}
\end{equation*}
$$

Solving (1) and (2) \Rightarrow orthocentre is $(0,0)$
\therefore correct options are (A), (C)

SECTION-3 : (Maximum Marks : 24)

- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If ONLY the correct integer is entered;
Zero Marks : 0 In all other cases.
8. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$, and $g: \mathbb{R} \rightarrow(0, \infty)$ be a function such that $\mathrm{g}(x+y)=g(x) g(y)$ for all $x, y \in \mathbb{R}$. If $f\left(\frac{-3}{5}\right)=12$ and $g\left(\frac{-1}{3}\right)=2$, then the value of $\left(f\left(\frac{1}{4}\right)+g(-2)-8\right) g(0)$ is \qquad .

Ans. (51)
Sol. $\begin{aligned} & f(x+y)=f(x)+f(y) \\ & \Rightarrow \quad f(n x)=n f(x) \forall n \in N\end{aligned}$
Now put $\mathrm{y}=-\mathrm{x}$ in eq.(1)
$\mathrm{f}(\mathrm{x})+\mathrm{f}(-\mathrm{x})=\mathrm{f}(0) \quad\{\mathrm{f}(0)=0\}$
$\Rightarrow \quad \mathrm{f}(-\mathrm{x})=-\mathrm{f}(\mathrm{x})$
$\Rightarrow \quad \mathrm{f}$ is odd function
from eq. (2)
$\mathrm{f}(-\mathrm{nx})=\mathrm{nf}(-\mathrm{x})$
$\Rightarrow \quad \mathrm{f}(-\mathrm{nx})=-\mathrm{nf}(\mathrm{x})$
$\Rightarrow \quad \mathrm{f}(\mathrm{mx})=\mathrm{mf}(\mathrm{x}) \forall \mathrm{m} \in \mathrm{Z}^{-}$
from eq. (2) and eq. (3)
$\mathrm{f}(\mathrm{nx})=\mathrm{nf}(\mathrm{x}) \forall \mathrm{n} \in \mathrm{Z}$
Now put $\mathrm{x}=\frac{\mathrm{p}}{\mathrm{q}}$ where $\mathrm{p}, \mathrm{q} \in \mathrm{Z}, \mathrm{q} \neq 0$
$\mathrm{f}\left(\frac{\mathrm{np}}{\mathrm{q}}\right)=\mathrm{nf}\left(\frac{\mathrm{p}}{\mathrm{q}}\right) \forall \mathrm{n} \in \mathrm{Z}$
put $\mathrm{n}=\mathrm{q}$
$f(p)=q f\left(\frac{p}{q}\right)$
$\Rightarrow \quad \operatorname{pf}(1)=\mathrm{qf}\left(\frac{\mathrm{p}}{\mathrm{q}}\right) \quad\{$ from eq.(4) $\}$

Let $\mathrm{f}(1)=\mathrm{a}$
then $\quad \mathrm{pa}=\mathrm{qf}\left(\frac{\mathrm{p}}{\mathrm{q}}\right)$
$f\left(\frac{p}{q}\right)=\frac{a p}{q}$
$\Rightarrow \quad \mathrm{f}(\mathrm{x})=\mathrm{ax} \forall \mathrm{x} \in \mathbb{Q}$
Now, $\mathrm{f}\left(\frac{-3}{5}\right)=\mathrm{a}\left(\frac{-3}{5}\right)=12 \Rightarrow \mathrm{a}=-20$
$\Rightarrow \quad \mathrm{f}(\mathrm{x})=-20 \mathrm{x} \forall \mathrm{x} \in \mathbb{Q}$
From the given functional equation it is not possible to find a unique function for irrational values of ' x ', there are infinitely many such functions satisfying given functional equation for irrational values of x, but in this problem we finally need the function at rational values of ' x ' only. So, for rational values of x we are getting a unique function mentioned in (5).

Now, $g(x+y)=g(x) \cdot g(y)$
$\Rightarrow \quad \ell n(\mathrm{~g}(\mathrm{x}+\mathrm{y})=\ell \mathrm{n}(\mathrm{g}(\mathrm{x}))+\ell \mathrm{n}(\mathrm{g}(\mathrm{y}))$

Let $\quad \ln (\mathrm{g}(\mathrm{x}))=\mathrm{h}(\mathrm{x})$
$\Rightarrow \quad \mathrm{h}(\mathrm{x}+\mathrm{y})=\mathrm{h}(\mathrm{x})+\mathrm{h}(\mathrm{y})$
$\Rightarrow \quad \mathrm{h}(\mathrm{x})=\mathrm{kx} \forall \mathrm{x} \in \mathbb{Q}$
$\Rightarrow \quad \mathrm{g}(\mathrm{x})=\mathrm{e}^{\mathrm{kx}} \forall \mathrm{x} \in \mathbb{Q}$
and $g\left(\frac{-1}{3}\right)=e^{-\frac{K}{3}}=2 \quad \Rightarrow \quad K=-3 \ln 2$
$\Rightarrow \quad \mathrm{K}=\ln \left(\frac{1}{8}\right)$
$\Rightarrow \quad \mathrm{g}(\mathrm{x})=\mathrm{e}^{\ln \left(\frac{1}{8}\right) \cdot \mathrm{x}}=\left(\frac{1}{8}\right)^{\mathrm{x}}=2^{-3 \mathrm{x}} \forall \mathrm{x} \in \mathbb{Q}$
Now, $f\left(\frac{1}{4}\right)=-5, g(-2)=2^{6}=64$

$$
g(0)=1
$$

So $\quad\left(f\left(\frac{1}{4}\right)+g(-2)-(8) . g(0)\right)$

$$
=(-5+64-8)(1)=51
$$

9. A bag contains N balls out of which 3 balls are white, 6 balls are green, and the remaining balls are blue. Assume that the balls are identical otherwise. Three balls are drawn randomly one after the other without replacement. For $i=1,2,3$, let W_{i}, G_{i}, and B_{i} denote the events that the ball drawn in the $i^{\text {th }}$ draw is a white ball, green ball, and blue ball, respectively. If the probability $P\left(W_{1} \cap G_{2} \cap B_{3}\right)=\frac{2}{5 N}$ and the conditional probability $P\left(B_{3} \mid W_{1} \cap G_{2}\right)=\frac{2}{9}$, then N equals \qquad .

Ans. (11)

Sol. | 3 | White |
| :---: | :---: |
| 6 | Green |
| $(\mathrm{N}$ | $-9)$ |

Given $\mathrm{P}\left(\mathrm{W}_{1} \cap \mathrm{G}_{2} \cap \mathrm{~B}_{3}\right)=\frac{2}{5 \mathrm{~N}}$
and $\mathrm{P}\left(\mathrm{B}_{3} \mid \mathrm{W}_{1} \cap \mathrm{G}_{2}\right)=\frac{2}{9}$
$\Rightarrow \frac{\mathrm{P}\left(\mathrm{B}_{3} \cap \mathrm{~W}_{1} \cap \mathrm{G}_{2}\right)}{\mathrm{P}\left(\mathrm{W}_{1} \cap \mathrm{G}_{2}\right)}=\frac{2}{9}$
$\Rightarrow \frac{2}{5 \mathrm{~N}} \times \frac{\mathrm{N} \times(\mathrm{N}-1)}{3 \times 6}=\frac{2}{9}$
$\Rightarrow \mathrm{N}=11$
10. Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\frac{\sin x}{\mathrm{e}^{\pi x}} \frac{\left(x^{2023}+2024 x+2025\right)}{\left(x^{2}-x+3\right)}+\frac{2}{e^{\pi x}} \frac{\left(x^{2023}+2024 x+2025\right)}{\left(x^{2}-x+3\right)} .
$$

Then the number of solutions of $f(\mathrm{x})=0$ in \mathbb{R} is \qquad .

Ans. (1)
Sol. $f(x)=\frac{\left(x^{2023}+2024 x+2025\right)}{e^{\pi x}\left(x^{2}-x+3\right)}(\sin x+2)$
$\because(\sin x+2)$ is never zero
\therefore for $\mathrm{x}^{2023}+2024 \mathrm{x}+2025=0$
let $\phi(x)=x^{2023}+2024 x+2025$
$\phi^{\prime}(\mathrm{x})=2023 \mathrm{x}^{2022}+2024>0 \forall \mathrm{x} \in \mathrm{R}$
$\therefore \phi(\mathrm{x})$ is an Strictly Increasing function
$\therefore \phi(\mathrm{x})=0$ for exactly one value of x
$\therefore \mathrm{f}(\mathrm{x})=0$ has one solution
11. Let $\vec{p}=2 \hat{i}+\hat{j}+3 \hat{k}$ and $\vec{q}=\hat{i}-\hat{j}+\hat{k}$. If for some real numbers α, β and γ, we have

$$
15 \hat{i}+10 \hat{j}+6 \hat{k}=\alpha(2 \vec{p}+\vec{q})+\beta(\vec{p}-2 \vec{q})+\gamma(\vec{p} \times \vec{q})
$$

then the value of γ is \qquad .
Ans. (2)
Sol. $\quad 15 \hat{i}+10 \hat{j}+6 \hat{k}=\alpha(2 \vec{p}+\vec{q})+\beta(\vec{p}-2 \vec{q})+\gamma(\vec{p} \times \vec{q})$
taking dot with $(\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}})$

$$
\begin{aligned}
& \left|\begin{array}{ccc}
15 & 10 & 6 \\
2 & 1 & 3 \\
1 & -1 & 1
\end{array}\right|=0+0+\gamma\left(\mathrm{p}^{2} \mathrm{q}^{2}-(\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{q}})^{2}\right) \quad\left[\because(\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}})^{2}+(\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{q}})^{2}=\mathrm{p}^{2} \mathrm{q}^{2}\right] \\
& \Rightarrow 52=26 \gamma \\
& \therefore \gamma=2
\end{aligned}
$$

12. A normal with slope $\frac{1}{\sqrt{6}}$ is drawn from the point $(0,-\alpha)$ to the parabola $x^{2}=-4 a y$, where $a>0$. Let L be the line passing through $(0,-\alpha)$ and parallel to the directrix of the parabola.

Suppose that L intersects the parabola at two points A and B. Let r denote the length of the latus rectum and s denote the square of the length of the line segment $A B$. If $r: s=1: 16$, then the value of $24 a$ is \qquad .

Ans. (12)

Sol.

$\frac{d y}{d x}=\left.\frac{x}{-2 a} \Rightarrow \frac{d y}{d x}\right|_{N}=-t$
Slope of normal $=\frac{1}{t}=\frac{1}{\sqrt{6}} \Rightarrow t=\sqrt{6}$
Now, $\frac{-\mathrm{at}^{2}+\alpha}{2 \mathrm{at}}=\frac{1}{\mathrm{t}}$
$\Rightarrow-\mathrm{at}^{2}+\alpha=2 \mathrm{a}$
$\Rightarrow-6 \mathrm{a}+\alpha=2 \mathrm{a} \Rightarrow \alpha=8 \mathrm{a}$

For A and B
$x^{2}=-4 a(-8 a)$
$\Rightarrow x^{2}=32 a^{2} \Rightarrow x= \pm 4 \sqrt{2} a$
$\therefore A(-4 \sqrt{2} a,-8 a), B(4 \sqrt{2} a,-8 a)$
$\therefore \mathrm{AB}^{2}=(8 \sqrt{2} \mathrm{a})^{2}=128 \mathrm{a}^{2}=\mathrm{s}$
\therefore Length of $L R=r=4 a$
$\Rightarrow \frac{\mathrm{r}}{\mathrm{s}}=\frac{4 \mathrm{a}}{128 \mathrm{a}^{2}}=\frac{1}{16}$
$\therefore 32 \mathrm{a}=16 \Rightarrow \mathrm{a}=\frac{1}{2}$
$\therefore 24 a=12$ Ans.
13. Let the function $f:[1, \infty) \rightarrow \mathbb{R}$ be defined by

$$
f(t)=\left\{\begin{array}{cc}
(-1)^{n+1} 2, & \text { if } t=2 \mathrm{n}-1, n \in \mathbb{N}, \\
\frac{(2 n+1-t)}{2} f(2 n-1)+\frac{(t-(2 n-1))}{2} f(2 n+1), & \text { if } 2 n-1<t<2 n+1, n \in \mathbb{N}
\end{array}\right.
$$

Define $g(x)=\int_{1}^{x} f(t) d t, x \in(1, \infty)$. Let α denote the number of solutions of the equation $g(x)=0$ in the interval $(1,8]$ and $\beta=\lim _{x \rightarrow 1^{+}} \frac{g(x)}{x-1}$. Then the value of $\alpha+\beta$ is equal to \qquad .
Ans. (5)
Sol. $\quad f(t)=\left\{\begin{array}{clc}2 & ; & t=1 \\ 4-2 t & ; & 1<t<3 \\ -2 & ; & t=3 \\ -8-2 t & ; & 3<t<5 \\ 2 & ; & t=5 \\ 12-2 \mathrm{t} & ; 5<t<7 \\ -2 & ; & t=7 \\ -16+2 \mathrm{t} & ; 7<t<9\end{array}\right.$
$g(x)=\int_{1}^{x} f(t) d t ; g^{\prime}(x)=f(x)$

for $x \in(1,8]$
$\mathrm{g}(\mathrm{x})=0 \Rightarrow \mathrm{x}=3,5,7 \therefore \alpha=3$
$\beta=\lim _{x \rightarrow 1^{+}} \frac{g(x)}{x-1}$
Apply L'pital
$=\frac{\mathrm{g}^{\prime}\left(1^{+}\right)}{1}=\mathrm{f}\left(1^{+}\right)$
$\beta=2$
$\therefore \alpha+\beta=5$

SECTION-4 : (Maximum Marks : 12)

- This section contains TWO (02) paragraphs.
- Based on each paragraph, there are TWO (02) questions.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+3$ If ONLY the correct numerical value is entered in the designated place; Zero Marks : 0 In all other cases.

"PARAGRAPH I"

Let $S=\{1,2,3,4,5,6\}$ and X be the set of all relations R from S to S that satisfy both the following properties.
i. $\quad R$ has exactly 6 elements.
ii. For each $(a, b) \in R$, we have $|a-b| \geq 2$.

Let $Y=\{R \in X$: The range of R has exactly one element $\}$ and
$Z=\{R \in X: R$ is a function from S to S.
Let $n(A)$ denote the number of elements in a set A.
(There are two questions based on PARAGRAPH "I", the question given below is one of them)
14. If $n(X)={ }^{\mathrm{m}} \mathrm{C}_{6}$, then the value of m is \qquad .

Ans. (20.00)
Sol. $|a-b| \geq 2$ or $|b-a|=2$

> Total

$$
\begin{array}{lll}
a=1 & b=3,4,5,6 & 8 \\
a=2 & b=4,5,6 & 6 \\
a=3 & b=5,6 & 4 \\
a=4 & b=6 & 2
\end{array}
$$

$$
\text { sum }=20
$$

$$
\mathrm{n}(\mathrm{X})={ }^{20} \mathrm{C}_{6}={ }^{\mathrm{m}} \mathrm{C}_{6}
$$

$\mathrm{m}=20$

"PARAGRAPH I"

Let $S=\{1,2,3,4,5,6\}$ and X be the set of all relations R from S to S that satisfy both the following properties.
i. $\quad \mathrm{R}$ has exactly 6 elements.
ii. For each $(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$, we have $|\mathrm{a}-\mathrm{b}| \geq 2$.

Let $\quad Y=\{R \in X$: The range of R has exactly one element $\}$ and
$Z=\{R \in X: R$ is a function from S to S.
Let $n(A)$ denote the number of elements in a set A.
(There are two questions based on PARAGRAPH " I ", the question given below is one of them)
15. If the value of $n(Y)+n(Z)$ is k^{2}, then $|k|$ is \qquad .
Ans. (36.00)
15.

Sol. given $|a-b| \geq 2$ so if

$$
\begin{array}{llll}
a=1 & b=3,4,5,6 & \rightarrow & 4 \times 2=8 \\
a=1 & b=4,5,6 & \rightarrow & 3 \times 2=6 \\
a=1 & b=5,6 & \rightarrow & 2 \times 2=4 \\
a=1 & b=6 & \rightarrow & 2 \times 1=2
\end{array}
$$

20
i.e. Total elements in X is ${ }^{20} \mathrm{C}_{6}$

Now for $\mathrm{n}(\mathrm{Y})$,
range of R has exactly one element i.e. second elements must be constant in R and since R must have 6 element so it is not possible to satisfy both condition so $n(Y)=0$.
for $\quad n(z) \quad 1 \rightarrow 3,4,5,6$

$$
\begin{aligned}
& 2 \rightarrow 4,5,6 \\
& 3 \rightarrow 1,5,6 \\
& 4 \rightarrow 1,2,6 \\
& 5 \rightarrow 1,2,3 \\
& 6 \rightarrow 1,2,3,4
\end{aligned}
$$

no. of relation that are function will be $\quad={ }^{4} \mathrm{C}_{1} \times{ }^{3} \mathrm{C}_{1} \times{ }^{3} \mathrm{C}_{1} \times{ }^{3} \mathrm{C}_{1} \times{ }^{3} \mathrm{C}_{1} \times{ }^{4} \mathrm{C}_{1}$

$$
=(4 \times 3 \times 3)^{2}=\mathrm{k}^{2}
$$

i.e. $\mathrm{k}=36$

"PARAGRAPH II"

Let $f:\left[0, \frac{\pi}{2}\right] \rightarrow[0,1]$ be the function defined by $f(x)=\sin ^{2} x$ and let $\mathrm{g}:\left[0, \frac{\pi}{2}\right] \rightarrow[0, \infty)$ be the function defined by $g(x)=\sqrt{\frac{\pi x}{2}-x^{2}}$.
(There are two questions based on PARAGRAPH "II", the question given below is one of them)
16. The value of $2 \int_{0}^{\frac{\pi}{2}} f(x) g(x) d x-\int_{0}^{\frac{\pi}{2}} g(x) d x$ is \qquad .

Ans. (0.00)
Sol. $\quad I=2 \int_{0}^{\frac{\pi}{2}} \underbrace{\sin ^{2} x \cdot \sqrt{\frac{\pi x}{2}-x^{2}}}_{\mathrm{I}_{1}}-\int_{0}^{\frac{\pi}{2}} g(x) d x$
Let $\mathrm{I}_{1}=\int_{0}^{\frac{\pi}{2}} \sin ^{2} \mathrm{x} \sqrt{\left(\frac{\pi}{4}\right)^{2}-\left(\mathrm{x}-\frac{\pi}{4}\right)^{2}} \quad$ (making perfect square)
apply kings

$$
I_{1}=\int_{0}^{\frac{\pi}{2}} \cos ^{2} x \sqrt{\left(\frac{\pi}{4}\right)^{2}-\left(\frac{\pi}{2}-x\right)^{2}}
$$

add both

$$
2 \mathrm{I}_{1}=\int_{0}^{\frac{\pi}{2}} \sqrt{\left(\frac{\pi}{4}\right)^{2}-\left(\mathrm{x}-\frac{\pi}{4}\right)^{2}}
$$

i.e. $2 \mathrm{I}_{1}=\int_{0}^{\frac{\pi}{2}} g(x)$

Now $I=2 I_{1}-\int_{0}^{\frac{\pi}{2}} g(x)=0$

"PARAGRAPH II"

Let $f:\left[0, \frac{\pi}{2}\right] \rightarrow[0,1]$ be the function defined by $f(x)=\sin ^{2} x$ and let $\mathrm{g}:\left[0, \frac{\pi}{2}\right] \rightarrow[0, \infty)$ be the function defined by $\mathrm{g}(\mathrm{x})=\sqrt{\frac{\pi x}{2}-x^{2}}$.
(There are two questions based on PARAGRAPH "II", the question given below is one of them)
17. The value of $\frac{16}{\pi^{3}} \int_{0}^{\frac{\pi}{2}} f(x) g(x) d x$ is \qquad .

Ans. (0.25)
Sol. Now $I_{1}=\int_{0}^{\frac{\pi}{2}} f(x) \cdot g(x) d x=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} g(x) d x$

$$
\text { i.e. } \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \sqrt{\left(\frac{\pi}{4}\right)^{2}-\left(x-\frac{\pi}{4}\right)^{2}} d x
$$

$$
\text { Using } \int \sqrt{a^{2}-x^{2}}=\frac{1}{2}\left(x \sqrt{a^{2}-x^{2}}+a^{2} \sin ^{-1}\left(\frac{x}{a}\right)\right)+C
$$

$$
\Rightarrow \frac{1}{2}\left[\frac{\left(\mathrm{x}-\frac{\pi}{4}\right)}{2} \sqrt{\frac{\pi \mathrm{x}}{2}-\mathrm{x}^{2}}+\frac{\frac{\pi^{2}}{16}}{2} \sin ^{-1}\left(\frac{\mathrm{x}-\frac{\pi}{4}}{\frac{\pi}{4}}\right)\right]_{0}^{\pi / 2}
$$

$$
\Rightarrow \frac{1}{2}\left[\left(0+\frac{\pi^{3}}{64}\right)-\left(0+\left(\frac{-\pi^{3}}{64}\right)\right)\right]
$$

$$
\Rightarrow \frac{1}{2} \times \frac{\pi^{3}}{32}
$$

Now $\frac{16}{\pi^{3}} \times \frac{\pi^{3}}{64}=\frac{1}{4}=0.25$

