JEE(ADVANCED)-2024 (EXAMINATION)

(Held On Sunday 26 ${ }^{\text {th }}$ MAY, 2024)

CHEMISTRY

TEST PAPER WITH ANSWER AND SOLUTION

PAPER-2

SECTION-1 : (Maximum Marks : 12)

- This section contains FOUR (04) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONLY ONE of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+3$ If ONLY the correct option is chosen;
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
Negative Marks : - 1 In all other cases.

1. According to Bohr's model, the highest kinetic energy is associated with the electron in the :
(A) first orbit of H atom
(B) first orbit of He^{+}
(C) second orbit of He^{+}
(D) second orbit of Li^{2+}

Ans. (B)
Sol. $\mathrm{KE}=+13.6 \times \frac{\mathrm{Z}^{2}}{\mathrm{n}^{2}}$
(A) $\mathrm{KE}_{1, \mathrm{H}}=+13.6 \times \frac{1^{2}}{1^{2}}=13.6 \mathrm{eV}$
(B) $\mathrm{KE}_{1, \mathrm{He}^{+}}=+13.6 \times \frac{2^{2}}{1^{2}}=13.6 \times 4 \mathrm{eV}$
(C) $\mathrm{KE}_{2, \mathrm{He}^{+}}=+13.6 \times \frac{2^{2}}{2^{2}}=13.6 \mathrm{eV}$
(D) $\mathrm{KE}_{2, \mathrm{Li}^{2+}}=+13.6 \times \frac{3^{2}}{2^{2}}=13.6 \times \frac{9}{4} \mathrm{eV}$
2. In a metal deficient oxide sample, $\mathbf{M}_{\mathbf{x}} \mathbf{Y}_{\mathbf{2}} \mathbf{O}_{\mathbf{4}}$ (\mathbf{M} and \mathbf{Y} are metals), \mathbf{M} is present in both +2 and +3 oxidation states and \mathbf{Y} is in +3 oxidation state. If the fraction of $\mathbf{M}^{\mathbf{2 +}}$ ions present in \mathbf{M} is $\frac{1}{3}$, the value of \mathbf{X} is \qquad .
(A) 0.25
(B) 0.33
(C) 0.67
(D) 0.75

Ans. (D)
Sol. Average oxidation state of $\mathrm{M}=\frac{1}{3} \times 2+\frac{2}{3} \times 3=+\frac{8}{3}$
\therefore For $\mathrm{M}_{\mathrm{X}} \mathrm{Y}_{\mathrm{Z}} \mathrm{O}_{\mathrm{Y}}$
$\frac{8}{3} \times x+3 \times 2+4(-2)=0$
$\frac{8}{3} \times x=2$
$x=\frac{3}{4}=0.75$
3. In the following reaction sequences, the major product \mathbf{Q} is:

(A)

(B)

(C)

(D)

Ans. (D)

Sol.

Lindane - 6, 6, 6
4. The species formed on fluorination of phosphorus pentachloride in a polar organic solvent are :
(A) $\left[\mathrm{PF}_{4}\right]^{+}\left[\mathrm{PF}_{6}\right]^{-}$and $\left[\mathrm{PCl}_{4}\right]^{+}\left[\mathrm{PF}_{6}\right]^{-}$
(B) $\left[\mathrm{PCl}_{4}\right]^{+}\left[\mathrm{PCl}_{4} \mathrm{~F}_{2}\right]^{-}$and $\left[\mathrm{PCl}_{4}\right]^{+}\left[\mathrm{PF}_{6}\right]^{-}$
(C) PF_{3} and PCl_{3}
(D) PF_{5} and PCl_{3}

Ans. (B)

Sol. PCl_{5} when fluorinated in a polar organic solvent, ionic isomers are formed.
$\left[\mathrm{PCl}_{4}^{+}\right]\left[\mathrm{PCl}_{4} \mathrm{~F}_{2}\right]^{-}$(colorless crystals)
$\left[\mathrm{PCl}_{4}^{+}\right]\left[\mathrm{PF}_{6}\right]^{-}$(white crystals)

SECTION-2 : (Maximum Marks : 12)

- This section contains THREE (03) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is(are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen;
Partial Marks : + 3 If all the four options are correct but ONLY three options are chosen;
Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct;

Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option;

Zero Marks : 0 If unanswered;
Negative Marks : -2 In all other cases.

- For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then
choosing ONLY (A), (B) and (D) will get +4 marks;
choosing ONLY (A) and (B) will get +2 marks;
choosing ONLY (A) and (D) will get +2 marks;
choosing ONLY (B) and (D) will get +2 marks;
choosing ONLY (A) will get +1 marks;
choosing ONLY (B) will get +1 marks;
choosing ONLY (D) will get +1 marks;
choosing no option (i.e. the question is unanswered) will get 0 marks and choosing any other option(s) will get -2 marks.

5. An aqueous solution of hydrazine $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$ is electrochemically oxidized by O_{2}, thereby releasing chemical energy in the form of electrical energy. One of the products generated from the electrochemical reaction is $\mathrm{N}_{2}(\mathrm{~g})$.
Choose the correct statement(s) about the above process :
(A) OH^{-}ions react with $\mathrm{N}_{2} \mathrm{H}_{4}$ at the anode to form $\mathrm{N}_{2}(\mathrm{~g})$ and water, releasing 4 electrons to the anode.
(B) At the cathode, $\mathrm{N}_{2} \mathrm{H}_{4}$ breaks to $\mathrm{N}_{2}(\mathrm{~g})$ and nascent hydrogen released at the electrode reacts with oxygen to form water.
(C) At the cathode, molecular oxygen gets converted to OH^{-}.
(D) Oxides of nitrogen are major by-products of the electrochemical process.

Ans. (A,C)
Sol. Anode : $\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{aq})+4 \mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(l)+4 \mathrm{e}^{-}$
Cathode : $2 \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{e}^{-} \longrightarrow 4 \mathrm{OH}^{-}(\mathrm{aq})$
6. The option(s) with correct sequence of reagents for the conversion of \mathbf{P} to \mathbf{Q} is(are) :

(A) i) Lindlar's catalyst, H_{2}; ii) $\mathrm{SnCl}_{2} / \mathrm{HCl}$; iii) NaBH_{4}; iv) $\mathrm{H}_{3} \mathrm{O}^{+}$
(B) i) Lindlar's catalyst, H_{2}; ii) $\mathrm{H}_{3} \mathrm{O}^{+}$; iii) $\mathrm{SnCl}_{2} / \mathrm{HCl}$; iv) NaBH_{4}
(C) i) NaBH_{4}; ii) $\mathrm{SnCl}_{2} / \mathrm{HCl}$; iii) $\mathrm{H}_{3} \mathrm{O}^{+}$; iv) Lindlar's catalyst, H_{2}
(D) i) Lindlar's catalyst, H_{2}; ii) NaBH_{4}; iii) $\mathrm{SnCl}_{2} / \mathrm{HCl}$; iv) $\mathrm{H}_{3} \mathrm{O}^{+}$

Ans. (C,D)

Sol.

7. The compound (s) having peroxide linkage is(are) :
(A) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
(B) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
(C) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$
(D) $\mathrm{H}_{2} \mathrm{SO}_{5}$

Ans. (B,D)
Sol.

SECTION-3 : (Maximum Marks : 24)

- This section contains SIX (06) questions.
- The answer to each question is a NON-NEGATIVE INTEGER.
- For each question, enter the correct integer corresponding to the answer using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks $\quad:+4$ If ONLY the correct integer is entered;
Zero Marks : 0 In all other cases.
8. To form a complete monolayer of acetic acid on 1 g of charcoal, 100 mL of 0.5 M acetic acid was used. Some of the acetic acid ramained unadsorbed. To neutralize the unadsorbed acetic acid, 40 mL of 1 M NaOH solution was required. If each molecule of acetic acid occupies $\mathbf{P} \times 10^{-23} \mathrm{~m}^{2}$ surface area on charcoal, the value of \mathbf{P} is \qquad .
[Use given data : Surface area of charcoal $=1.5 \times 10^{2} \mathrm{~m}^{2} \mathrm{~g}^{-1}$; Avogadro's number $\left(\mathrm{N}_{\mathrm{A}}\right)=6.0 \times 10^{23} \mathrm{~mol}^{-1}$]
Ans. (2500)
Sol. Millimole of acid taken $=100 \times 0.5=50$
Millimole of NaOH used $=40 \times 1=40$
Millimole of acid adsorbed $=50-40=10$
Molecules of acid adsorbed $=10 \times 10^{-3} \times 6 \times 10^{23}=6 \times 10^{21}$
Surface area occupied per molecule $=\frac{1.5 \times 10^{2}}{6 \times 10^{21}}=0.25 \times 10^{-19}=2500 \times 10^{-23}$
9. Vessel-1 contains $\mathbf{w}_{\mathbf{2}} \mathrm{g}$ of a non-volatile solute \mathbf{X} dissolved in $\mathbf{w}_{\mathbf{1}} \mathrm{g}$ of water. Vessel-2 contains $\mathbf{w}_{\mathbf{2}} \mathrm{g}$ of another non-volatile solute \mathbf{Y} dissolved in $\mathbf{w}_{\mathbf{1}} \mathrm{g}$ of water. Both the vessels are at the same temperature and pressure. The molar mass of \mathbf{X} is 80% of that of \mathbf{Y}. The van't Hoff factor for \mathbf{X} is 1.2 times of that of \mathbf{Y} for their respective concentrations.

The elevation of boiling point for solution in Vessel-1 is \qquad \% of the solution in Vessel-2.

Ans. (150)
Sol. Vessel - I :
$\left(\Delta \mathrm{T}_{\mathrm{b}}\right)_{1}=\mathrm{i}_{1} \times \mathrm{K}_{\mathrm{b}} \times \frac{\mathrm{w}_{2} / \mathrm{GMM}_{\mathrm{X}}}{\mathrm{w}_{1} / 1000}$
Vessel-2 :
$\left(\Delta \mathrm{T}_{\mathrm{b}}\right)_{2}=\mathrm{i}_{2} \times \mathrm{K}_{\mathrm{b}} \times \frac{\mathrm{w}_{2} / \mathrm{GMM}_{\mathrm{Y}}}{\mathrm{w}_{1} / 1000}$
$\frac{\left(\Delta \mathrm{T}_{\mathrm{b}}\right)_{1}}{\left(\Delta \mathrm{~T}_{\mathrm{b}}\right)_{2}}=\frac{\mathrm{i}_{1}}{\mathrm{i}_{2}} \times \frac{\mathrm{GMM}_{\mathrm{Y}}}{\mathrm{GMM}_{\mathrm{X}}}=\frac{1.2}{0.8}=\frac{3}{2}$
$\left[\frac{\left(\Delta \mathrm{T}_{\mathrm{b}}\right)_{1}}{\left(\Delta \mathrm{~T}_{\mathrm{b}}\right)_{2}}\right] \times 100=\frac{3}{2} \times 100=150 \%$
10. For a double strand DNA, one strand is given below:

The amount of energy required to split the double strand DNA into two single strands is \qquad kcal mol ${ }^{-1}$.
[Given : Average energy per H-bond for A-T base pair $=1.0 \mathrm{kcal} \mathrm{mol}^{-1}$, G-C base pair $=1.5 \mathrm{kcal} \mathrm{mol}^{-1}$, and A-U base pair $=1.25 \mathrm{kcal} \mathrm{mol}^{-1}$. Ignore electrostatic repulsion between the phosphate groups.]

Ans. (41)
Sol. A = T 2 H-bond
$\mathrm{G} \equiv \mathrm{C} \quad 3 \mathrm{H}$-bond
Number of $\mathrm{A}=\mathrm{T}$ pair $=7$
Number of $\mathrm{G} \equiv \mathrm{C}$ pair $=6$
Number of H -bond involve in $\mathrm{A}=\mathrm{T}=7 \times 2=14$
Number of H-bond involve in $\mathrm{G} \equiv \mathrm{C}=6 \times 3=18$
Energy required for $\mathrm{A}=\mathrm{T}=14 \times 1=14$
Energy required for $\mathrm{G} \equiv \mathrm{C}=18 \times 1.5=27$
Total energy required $14+27=41$
11. A sample initially contains only $U-238$ isotope of uranium. With time, some of the $U-238$ radioactively decays into $\mathrm{Pb}-206$ while the rest of it remains undisintegrated.

When the age of the sample is $\mathbf{P} \times 10^{8}$ years, the ratio of mass of $\mathrm{Pb}-206$ to that of $\mathrm{U}-238$ in the sample is found to be 7. The value of \mathbf{P} is \qquad .
[Given : Half-life of U-238 is 4.5×10^{9} years; $\log _{\mathrm{e}} 2=0.639$]

Ans. (143)

$$
{ }_{92} \mathrm{U}^{238} \quad \longrightarrow \quad{ }_{82} \mathrm{~Pb}^{206}+8_{2} \mathrm{He}^{4}+6_{-1} \beta^{0}
$$

$\mathrm{t}=0 \quad \mathrm{~N}_{0}=\left(\frac{1}{238}+\frac{7}{206}\right)$ moles
$\mathrm{t}=\mathrm{tN}_{\mathrm{t}}=\frac{1}{238}$ moles $\mathrm{x}=\frac{7}{206}$ moles
As per $1^{\text {st }}$ order kinetics :
$\lambda t=\ln \frac{N_{0}}{N_{t}}$
$\frac{\ln 2}{4.5 \times 10^{9}}=\frac{1}{\mathrm{t}} \ln \frac{\frac{1}{238}+\frac{7}{206}}{\frac{1}{238}}$
$\mathrm{t}=\frac{4.5 \times 10^{9}}{\ln 2} \ln \frac{1872}{206}$
$\mathrm{t}=4.5 \times 10^{9} \times \frac{\ln (9.08)}{\ln 2}=4.5 \times 10^{9} \times \frac{2.206}{0.693}=143.3 \times 10^{8}$
12. Among $\left[\mathrm{Co}(\mathrm{CN})_{4}\right]^{4-},\left[\mathrm{Co}(\mathrm{CO})_{3}(\mathrm{NO})\right], \mathrm{XeF}_{4},\left[\mathrm{PCl}_{4}\right]^{+},\left[\mathrm{PdCl}_{4}\right]^{2-},\left[\mathrm{ICl}_{4}\right]^{-},\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-}$ and P_{4} the total number of species with tetrahedral geometry is \qquad .

Ans. (5)
Sol. $\left[\mathrm{Co}(\mathrm{CN})_{4}\right]^{4-},\left[\mathrm{Co}(\mathrm{CO})_{3} \mathrm{NO}\right],\left[\mathrm{PCl}_{4}\right]^{+},\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-} \& \mathrm{P}_{4}$ are with tetrahedral geometry.
13. An organic compound \mathbf{P} having molecular formula $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{3}$ gives ferric chloride test and does not have intramolecular hydrogen bond. The compound \mathbf{P} reacts with 3 equivalents of $\mathrm{NH}_{2} \mathrm{OH}$ to produce oxime \mathbf{Q}. Treatment of \mathbf{P} with excess methyl iodide in the presence of KOH produces compound \mathbf{R} as the major product. Reaction of \mathbf{R} with excess iso-butylmagnesium bromide followed by treatment with $\mathrm{H}_{3} \mathrm{O}^{+}$gives compound \mathbf{S} as the major product.

The total number of methyl $\left(-\mathrm{CH}_{3}\right)$ group(s) in compound \mathbf{S} is \qquad .

Ans. (12)

Sol.

S

No. of $-\mathrm{CH}_{3}$ group (methyl group) in S is $\rightarrow 12$

SECTION-4 : (Maximum Marks : 12)

- This section contains TWO (02) paragraphs.
- Based on each paragraph, there are TWO (02) questions.
- The answer to each question is a NUMERICAL VALUE.
- For each question, enter the correct numerical value of the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
- If the numerical value has more than two decimal places, truncate/round-off the value to TWO decimal places.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct numerical value is entered in the designated place;

Zero Marks : 0 In all other cases.

"PARAGRAPH I"

An organic compound \mathbf{P} with molecular formula $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2}$ decolorizes bromine water and also shows positive iodoform test. \mathbf{P} on ozonolysis followed by treatment with $\mathrm{H}_{2} \mathrm{O}_{2}$ gives \mathbf{Q} and \mathbf{R}. While compound \mathbf{Q} shows positive iodoform test, compound \mathbf{R} does not give positive iodoform test. \mathbf{Q} and \mathbf{R} on oxidation with pyridinium chlorochromate (PCC) followed by heating give \mathbf{S} and \mathbf{T}, respectively. Both \mathbf{S} and \mathbf{T} show positive iodoform test.

Complete copolymerization of 500 moles of \mathbf{Q} and 500 moles of \mathbf{R} gives one mole of a single acyclic copolymer \mathbf{U}.
[Given, atomic mass : $\mathrm{H}=1, \mathrm{C}=12, \mathrm{O}=16$]
14. Sum of number of oxygen atoms in \mathbf{S} and \mathbf{T} is \qquad .

Ans. (2)

Sol.

(P) $\left[\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2}\right]$
(R)
 β-hydroxy valeric acid does not
$+\quad$ given + ve iodoform test
(Q)

β-hydroxy butyric acid does give +ve iodoform test

$\mathrm{S} \& \mathrm{~T}$ shows +ve idoform test.
Total oxygen atoms
present in S, T are $=1+1=2$
Ans. $\Rightarrow 2$

"PARAGRAPH I"

An organic compound \mathbf{P} wth molecular formula $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2}$ decolorizes bromine water and also shows positive iodoform test. \mathbf{P} on ozonolysis followed by treatment with $\mathrm{H}_{2} \mathrm{O}_{2}$ gives \mathbf{Q} and \mathbf{R}. While compound \mathbf{Q} shows positive iodoform test, compound \mathbf{R} does not give positive iodoform test. \mathbf{Q} and \mathbf{R} on oxidation with pyridinium chlorochromate (PCC) followed by heating give \mathbf{S} and \mathbf{T}, respectively. Both \mathbf{S} and \mathbf{T} show positive iodoform test.

Complete copolymerization of 500 moles of \mathbf{Q} and 500 moles of \mathbf{R} gives one mole of a single acyclic copolymer \mathbf{U}.
[Given, atomic mass : $\mathrm{H}=1, \mathrm{C}=12, \mathrm{O}=16$]
15. The molecular weight of \mathbf{U} is \qquad .

Ans. (93018)
Sol.

(P) $\left[\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{2}\right]$
(R)

β-hydroxy valeric acid does not given + ve iodoform test
(Q)

β-hydroxy butyric acid does give + ve iodoform test

$\mathrm{S} \& \mathrm{~T}$ shows + ve idoform test.
$\mathrm{RmfC} \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{3}(\mathrm{M} . \mathrm{wt})_{\mathrm{R}}=70+48=118$
$\mathrm{Q} \mathrm{mf} \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{3}(\mathrm{M} . \mathrm{wt})_{\mathrm{Q}}=56+48=104$

500 mole $\mathrm{Q}+500$ mole $\mathrm{R} \xrightarrow[\text { polymer }]{\text { Condensation }} \underset{\begin{array}{c}\text { Acyclic polymer }\end{array}}{\begin{array}{c}\text { PHBV. } \\ (1 \text { mole })\end{array}}$
U molecular weight $=500 \times 118+500 \times 104-999 \times 18$

$$
=500 \times 222-17982
$$

$$
=111000-17982=93018
$$

Ans. is $\Rightarrow 93018$

When potassium iodide is added to an aqueous solution of potassium ferricyanide, a reversible reaction is observed in which a complex \mathbf{P} is formed. In a strong acidic medium, the equilibrium shifts completely towards \mathbf{P}. Addition of zinc chloride to \mathbf{P} in a slightly acidic medium results in a sparingly soluble complex \mathbf{Q}.
16. The number of moles of potassium iodide required to produce two moles of \mathbf{P} is \qquad .

Ans. (2)

Sol. $\mathrm{KI}+\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \rightleftharpoons \mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]+\frac{1}{2} \mathrm{I}_{2}$

Moles of KI required $=2$

"PARAGRAPH II"

When potassium iodide is added to an aqueous solution of potassium ferricyanide, a reversible reaction is observed in which a complex \mathbf{P} is formed. In a strong acidic medium, the equilibrium shifts completely towards \mathbf{P}. Addition of zinc chloride to \mathbf{P} in a slightly acidic medium results in a sparingly soluble complex \mathbf{Q}.
17. The number of zinc ions present in the molecular formula of \mathbf{Q} is \qquad .

Ans. (3 or 2)
Sol. $\quad \mathrm{Zn}^{2+}+\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \rightarrow \mathrm{K}_{2} \mathrm{Zn}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{2}$

OR
$\mathrm{Zn}^{2+}+\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \rightarrow \mathrm{Zn}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$

