(HE	JEE-MAIN EXAMINA LD ON TUESDAY 28 th JANUARY 2025)		- ,			TO 6:00 PM
	PHYSICS		TE	ST PAPER WIT	'H SOI	LUTION
	SECTION-A	28.	Mate	ch List-I with List-I	I	
26.	A uniform magnetic field of 0.4 T acts			List-I		List-II
	perpendicular to a circular copper disc 20 cm in		(A)	Angular Impulse	(I)	$[M^0 L^2 T^{-2}]$
	radius. The disc is having a uniform angular		(B)	Latent Heat	(II)	$[M L^2 T^{-3} A^{-1}]$
	velocity of 10 π rad s ⁻¹ about an axis through its		(C)	Electrical	(III)	$[M L^2 T^{-1}]$
	centre and perpendicular to the disc. What is the			resistivity		
	protential difference developed between the axis of		(D)	Electromotive	(IV)	$[M L^{3} T^{-3} A^{-2}]$
	the disc and the rim ? ($\pi = 3.14$)			force	C	
	(1) 0.0628 V (2) 0.5024 V			Choose the correct answer from the options give below :		the options giver
	(3) 0.2512 V (4) 0.1256 V			w : A)-(III), (B)-(I), (C))) (II)
Ans.						· · · ·
	B = 0.4 T		(2) (A)-(I), (B)-(III), (C)-(IV), (D)-(II) (3) (A)-(III), (B)-(I), (C)-(II), (D)-(IV)			
	r = 20 cm		(4) (A)-(II), (B)-(I), (C)-(IV), (D)-(III)			
	$\omega = 10\pi \text{ rad/s}$	Ans. Sol.				
	Γ ¹ Γ Γ		Angular impulse = $[M L^2 T^{-1}]$			
	$E = \frac{1}{2} B \omega R^2$		Latent Heat = $[M^0 L^2 T^{-2}]$			
	= 0.2512 V	$\langle \cdot \rangle$		trical resistivity = [N		-
27.	A parallel plate capacitor of capacitance 1 μ F is			tromotive force = [N		-
	charged to a potential difference of 20 V. The	29.	The ratio of vapour densities of two gases at the Δ			
	distance between plates is 1 µm. The energy		same	e temperature is $\frac{4}{25}$	$\frac{1}{5}$, then	the ratio of r.m.s
	density between plates of capacitor is :			cities will be :		
	(1) $1.8 \times 10^3 \text{ J/m}^3$ (2) $2 \times 10^{-4} \text{ J/m}^3$		(1)	$\frac{25}{4}$	(2) $\frac{2}{5}$	
	(3) 2×10^2 J/m ³ (4) 1.8×10^5 J/m ³		(3)			
Ans.			-	$\overline{2}$	(4) $\frac{4}{25}$	
Sol.	$C = 1 \ \mu F$		(3) 01	4		
	V = 20 V	Sol.	$\frac{\rho_1}{\rho_2} =$	$=\frac{1}{25}$		
	$d = 1 \ \mu m$		Rati	o of rms velocities =	$\sqrt{\frac{\rho_2}{\rho_1}} =$	$\frac{5}{2}$
	Energy density = $=\frac{1}{2} \in_0 E^2$	30.	The	kinetic energy of tr	anslation	n of the molecules
	V	in 50g of CO ₂ gas at 17°C is :				
	$\mathbf{E} = \frac{\mathbf{V}}{\mathbf{d}} = 20 \times 10^6 \mathbf{v} / \mathbf{m}$		(1) 3	986.3 J	(2) 410	2.8 J
	$U = 1.77 \times 10^3 \text{ J/m}^3$		(3) 4	205.5 J	(4) 358	32.7 J
		Ans.	(2)			

- Sol. $(KE)_{Translational} = \left[\frac{3}{2}KT\right] \times \text{no. of molecule}$ No. of molecule $= \left[\frac{50}{44} \times 6.023 \times 10^{23}\right]$ $(KE)_{Translational} = 4108.644 \text{ J}$
- 31. In a long glass tube, mixture of two liquids A and B with refractive indices 1.3 and 1.4 respectively, forms a convex refractive meniscus towards A. If an object placed at 13 cm from the vertex of the meniscus in A forms an image with a magnification of '-2' then the radius of curvature of meniscus is :

(1) 1 cm (2)
$$\frac{1}{3}$$
 cm

(3)
$$\frac{2}{3}$$
 cm (4) $\frac{4}{3}$ cm

Ans. (3)

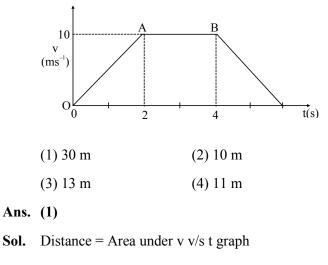
Sol.	$ \begin{array}{c} A\\ n_1=1.3\\ O \longleftarrow 13cm \end{array} $	
	$\frac{\mathbf{n}_2}{\mathbf{v}} - \frac{\mathbf{n}_1}{\mathbf{u}} \frac{\mathbf{n}_2 - \mathbf{n}_1}{\mathbf{R}}$	Ó
	$\frac{1.4}{v} - \frac{1.3}{-13} = \frac{0.1}{R}$	
	$\frac{1.4}{v} = \frac{1-R}{10R}$	
	$\frac{1.4}{v} = \frac{1-R}{10R}$	
	$m = \frac{v / n_2}{u / n_1}$	
	$-2 \times \frac{(-13)}{1.3} = \frac{10R}{1-R}$	
	$R = \frac{2}{3}$ cm	

32. The frequency of revolution of the electron in Bohr's orbit varies with n, the principal quantum number as

(1)
$$\frac{1}{n}$$
 (2) $\frac{1}{n^3}$

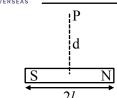
(3)
$$\frac{1}{n^4}$$
 (4) $\frac{1}{n^2}$

Ans. (2)


Sol. Frequency of revolution $\propto \frac{1}{n^3}$

- **33.** Which of the following phenomena can not be explained by wave theory of light ?
 - (1) Reflection of light
 - (2) Diffraction of light
 - (3) Refraction of light
 - (4) Compton effect

Ans. (4)


Sol. Comptan effect is based on particle nature of light.

34. The velocity-time graph of an object moving along a straight line is shown in figure. What is the distance covered by the object between t = 0 to t = 4s?

Distance =
$$\frac{1}{2} \times 2 \times 10 + 2 \times 10 = 30$$
m

35.

A bar magnet has total length 2l = 20 units and the field point P is at a distance d = 10 units from the centre of the magnet. If the relative uncertainty of length measurement is 1%, then uncertainty of the magnetic field at point P is :

(1) 10%	(2) 4%
(3) 3%	(4) 5%

Ans. (2,3)

Sol. Method-1:

Without considering uncentainity in ℓ .

$$B = \frac{\mu_0}{4\pi} \frac{m}{r^3}$$
$$B \propto \frac{1}{r^3}$$

$$\frac{\Delta B}{B} = 3 \times \left(\frac{\Delta r}{r}\right)$$

% uncertainity in B = 3%

Method-2:

With considering uncentainity in ℓ .

$$B \propto \frac{1}{r^3}$$
$$\frac{\Delta B}{B} = \frac{\Delta \ell}{\ell} + 3 \times \left(\frac{\Delta r}{r}\right) = 1$$

% uncertainity in B = 4%

36. Earth has mass 8 times and radius 2 times that of a planet. If the escape velocity from the earth is 11.2 km/s, the escape velocity in km/s from the planet will be :

 $+3 \times 1 = 4\%$

(1) 11.2	(2) 5.6
(3) 2.8	(4) 8.4

Sol.
$$V_{escape} = \sqrt{\frac{2GM}{R}}$$

 $\frac{(V_{escape})_{Planet}}{(V_{escape})_{Earth}} = \sqrt{\left(\frac{M_P}{M_E}\right) \times \left(\frac{R_E}{R_P}\right)} = \frac{1}{2}$
 $(V_{escape})_{Planet} = \frac{1}{2}(V_{escape})_{Earth} = 5.6 \text{ km / s}$

37. Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A) : Knowing initial position x₀ and initial momentum p₀ is enough to determine the position and momentum at any time t for a simple harmonic motion with a given angular frequency ω.

Reason (R) : The amplitude and phase can be expressed in terms of x_0 an p_0 .

In the light of the above statements, choose the **correct** answer from the options given below :

- Both (A) and (R) are true but (R) is NOT the correct explanation of (A).
- (2) (A) is false but (R) is true.
- (3) (A) is true but (R) is false.
- (4) Both (A) and (R) are true and (R) is the correct explanation of (A).

Ans. (4)

 X_0

Sol.
$$x = A \sin(\omega t + \phi)$$

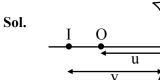
$$= A \sin \phi \qquad \dots (1)$$

$$p = mA\omega \cos(\omega t +$$

$$_0 = mA\omega \cos\phi \qquad \dots (2)$$

¢)

$$(2)/(1) \Longrightarrow \tan \phi = \left(\frac{\mathbf{x}_0}{\mathbf{p}_0}\right) \mathbf{m}\omega$$


$$\sin\phi = \frac{x_0 m\omega}{\sqrt{(m\omega x_0)^2 + p_0^2}}$$

From (1),
$$A = \frac{x_0}{\sin \phi} = \frac{\sqrt{(m\omega x_0)^2 + p_0^2}}{m\omega}$$

This means we can explain assertion with the given reason.

38. A concave mirror produces an image of an object such that the distance between the object and image is 20 cm. If the magnification of the image is '-3', then the magnitude of the radius of curvature of the mirror is :

Ans. (4)

m = -3 =
$$-\frac{v}{u}$$
 and v - u = 20 cm
f = $\frac{vu}{v+u} = \frac{(-30)(-10)}{-30-10}$
∴ R = +15

39. A body of mass 4 kg is placed on a plane at a point P having coordinate (3, 4) m. Under the action of force $\vec{F} = (2\hat{i} + 3\hat{j})N$, it moves to a new point Q having coordinates (6, 10)m in 4 sec. The average power and instantaneous power at the end of 4 sec are in the ratio of :

(1) 13 : 6	(2) 6 : 13		
(3) 1 : 2	(4) 4 : 3		

Ans. (2)

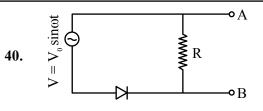
Sol.
$$= \frac{(2\hat{i}+3\hat{j}).(3\hat{i}+6\hat{j})}{4} = 6$$

$$\vec{a} = \left(\frac{\vec{F}}{m} = \frac{1}{2}\hat{i} + \frac{3}{4}\hat{j}\right)$$

$$\vec{v} \text{ at } t = 4 \text{ sec} = \left(\frac{1}{2}\hat{i} + \frac{3}{4}\hat{j}\right) \times 4 = (2\hat{i} + 3\hat{j})$$

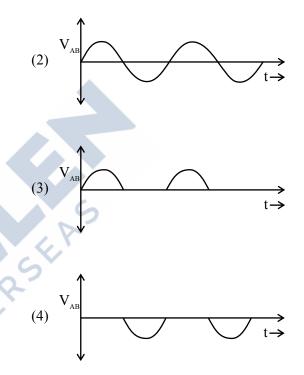
$$P_{\text{ins}} = (2\hat{i} + 3)(2\hat{i} + 3\hat{j}) = 13$$

$$\frac{\langle P \rangle}{P_{ins}} = \frac{6}{13}$$

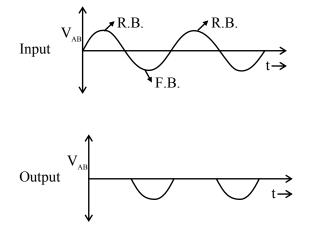

Note : Given data is not matching.

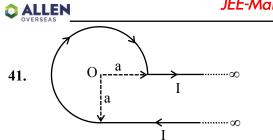
$$S = ut + \frac{1}{2}at^{2}$$

$$S = 0 + \frac{1}{2}\frac{(2\hat{i} + 3\hat{j})}{4}(4)^{2} = 4\hat{i} + 6\hat{j}$$


If $\vec{r}_i = 3\hat{i} + 4\hat{j}$ then $\vec{r}_f = 7\hat{i} + 10\hat{j}$

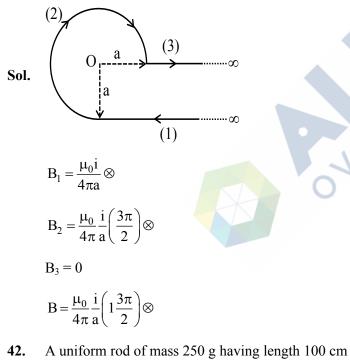
But Final position given in the question is (6, 10).


In the circuit shown here, assuming threshold voltage of diode is negligibly small, then voltage V_{AB} is correctly represented by :


(1) V_{AB} would be zero at all times

Ans. (4)

Sol. $V = V_0 \sin \omega t$



An infinite wire has a circular bend of radius a, and carrying a current I as shown in figure. The magnitude of magnetic field at the origin O of the arc is given by :

(1)
$$\frac{\mu_0}{4\pi} \frac{I}{a} \left[\frac{\pi}{2} + 1 \right]$$

(2)
$$\frac{\mu_0}{4\pi} \frac{I}{a} \left[\frac{3\pi}{2} + 1 \right]$$

(3)
$$\frac{\mu_0}{2\pi} \frac{I}{a} \left[\frac{\pi}{2} + 2 \right]$$

(4)
$$\frac{\mu_0}{4\pi} \frac{I}{a} \left[\frac{3\pi}{2} + 2 \right]$$

Ans. (2)

42. A uniform fou of mass 250 g naving length foo chi is balanced on a sharp edge at 40 cm mark. A mass of 400 g is suspended at 10 cm mark. To maintain the balance of the rod, the mass to be suspended at 90 cm mark, is

(1) 300 g	(2) 190 g	
(3) 200 g	(4) 290 g	

Sol.

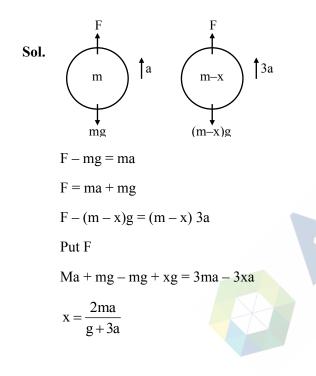
$$\begin{array}{c}
10cm \quad 40cm \quad 50cm \quad 90cm \\
\hline 400g \quad 250g \quad mg \\
\hline \tau_{Net} = 0 \Rightarrow (400g \times 30) = (250g \times 10) \quad (mg \times 50) \\
m = \frac{12000 - 2500}{50} = \frac{9500}{50} \\
M = 190 g$$
43. a 400 g solid cube having an edge of length 10 cm floats in water. How much volume of the cube is outside the water ? (Given : density of water = 1000 kg m⁻³) (1) 1400 cm³ (2) 4000 cm³ (3) 400 cm³ (4) 600 cm³

Ans. (4)
Sol. Mg = F_B \Rightarrow (400 \times 10^{-3}) = 10^3 \times V_d \\
V_d = 400 \times 10^{-6} m^3 \\
(Vol.)_{outside} = (10 \times 10^{-2})^3 - 400 \times 10^{-6} \\
= 600 \times 10^{-6} m^2 = 600 cm^3

44. The magnetic field of an E.M. wave is given by $\vec{B} = \left(\frac{\sqrt{3}}{2}\hat{i} + \frac{1}{2}\hat{j}\right) 30 \sin\left[\omega\left(t - \frac{z}{c}\right)\right]$ (S.I. Units)
The corresponding electric field in S.I. units is : (1) $\vec{E} = \left(\frac{1}{2}\hat{i} - \frac{\sqrt{3}}{2}\hat{j}\right) 30c \sin\left[\omega\left(t - \frac{z}{c}\right)\right]$
(3) $\vec{E} = \left(\frac{1}{2}\hat{i} + \frac{\sqrt{3}}{2}\hat{j}\right) 30 c \sin\left[\omega\left(t + \frac{z}{c}\right)\right]$
(4) $\vec{E} = \left(\frac{\sqrt{3}}{2}\hat{i} - \frac{1}{2}\hat{j}\right) 30 c \sin\left[\omega\left(t - \frac{z}{c}\right)\right]$
Ans. (1)
Sol. $\vec{B} = \left(\frac{\sqrt{3}}{2}\hat{i} + \frac{1}{2}\hat{j}\right) 30 \sin\left[\omega\left(t - \frac{z}{c}\right)\right]$

$$\vec{E} = \vec{B} \times \vec{c}$$
 and $E = B_0 c$

Here
$$\vec{E}\left(\frac{\sqrt{3}}{2}(-\hat{j})+\frac{1}{2}\hat{i}\right)$$


$$\vec{E} = 30c$$
$$\vec{E} = \left(\frac{1}{2}\hat{i} - \frac{\sqrt{3}}{2}\hat{j}\right) 30c\sin\left[\omega\left(t - \frac{z}{c}\right)\right]$$

JEE-Main Exam Session-1 (January 2025)/28-01-2025/Evening Shift

45. A balloon and its content having mass M is moving up with an acceleration 'a'. The mass that must be released from the content so that the balloon starts moving up with an acceleration '3a' will be : (Take 'g' as acceleration due to gravity)

(1)
$$\frac{3Ma}{2a-g}$$
 (2) $\frac{3Ma}{2a+g}$
(3) $\frac{2Ma}{3a+g}$ (4) $\frac{2Ma}{3a-g}$

Ans. (3)

SECTION-B

46.

A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field B exists into the page. The bar starts to move from the vertex at time t = 0 with a constant velocity. If the induced EMF is $E \propto t^n$, then value of n is ____.

Ans. (1)

Sol.

$$E = \ell vB$$

$$E = \frac{2x}{\sqrt{3}} \times vB \text{ and } x = vt$$

$$E = \frac{2}{\sqrt{3}} v^{2}Bt$$

$$E = \frac{2}{\sqrt{3}} v^{2}Bt$$

47. An electric dipole of dipole moment 6×10^{-6} Cm is placed in uniform electric field of magnitude 10^{6} V/m. Initially, the dipole moment is parallel to electric field. The work that needs to be done on the dipole to make its dipole moment opposite to the field, will be _____ J.

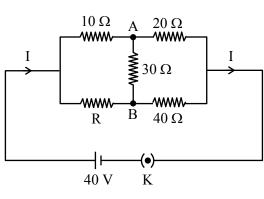
 $\propto t^1$

Sol.
$$p = 6 \times 10^{-6} \text{ Cm}$$

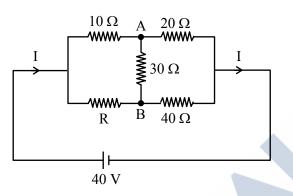
 $E = 10^{6} \text{ v/m}$
 $W = \Delta U = -pE(\cos\theta_{f} - \cos\theta_{i})$

W = 2pE = 12 J

48. The volume contraction of a solid copper cube of edge length 10 cm, when subjected to a hydraulic pressure of 7×10^6 Pa, would be _____ mm³. (Given bulk modulus of copper = 1.4×10^{11} Nm⁻²)


Sol.
$$B = \frac{\Delta P}{\frac{\Delta V}{V}}$$
$$\Delta V = \frac{7 \times 10^6}{1.4 \times 10^{11}} \times (10 \times 10^{-2})^3$$
$$\Delta V = 50 \text{ mm}^3$$

6


JEE-Main Exam Session-1 (January 2025)/28-01-2025/Evening Shift

49. The value of current I in the electrical circuit as given below, when potential at A is equal to the potential at B, will be ______A.

Sol.

 V_{A} = V_{B} \Longrightarrow the bridge is balanced

 $\Rightarrow \frac{10}{R} = \frac{20}{40}$

$$R = 20\Omega$$

$$I = \frac{40}{20} = 2A$$

Ans. (54)

Sol. Maxima condition

$$2\mu t = n\lambda \Rightarrow t = \frac{n\lambda}{2\mu} \Rightarrow t = \frac{\lambda}{2\mu}, \frac{2\lambda}{2\mu}, \dots$$

Minima condition
$$2\mu t = (2n - 1)\lambda/2$$

$$\Rightarrow \mathbf{t} = \frac{(2\mathbf{n} - 1)\lambda}{4\mu} \Rightarrow \mathbf{t} = \frac{\lambda}{4\mu}, \frac{3\lambda}{4\mu}, \dots$$
$$\Delta \mathbf{t} = \frac{2\lambda}{4\mu}$$

Rate of evaporation =
$$\frac{A(\Delta t)}{time}$$
 = 54 × 10⁻¹³ m³/s