/	JEE-MAIN EXAMINATION - JANUARY 2025		
(HE	LD ON TUESDAY 28 th JANUARY 2025)		TIME : 3:00 PM TO 6:00 PM
	MATHEMATICS		TEST PAPER WITH SOLUTION
	SECTION-A	Sol.	Equation of angle bisector : $x - y = 0$
1.	Bag B_1 contains 6 white and 4 blue balls, Bag B_2 contains 4 white and 6 blue balls, and Bag B_3 contains 5 white and 5 blue balls. One of the bags		$\left \frac{a(1-a)}{\sqrt{2}}\right = \frac{9}{\sqrt{2}} \Longrightarrow a = 5 \text{ or } -4$
	is selected at random and a ball is drawn from it. If the ball is white, then the probability, that the ball is drawn from Bag B ₂ , is :	3.	Sum = 5 + (-4) = 1 If the components of $\vec{a} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$ along and
	(1) $\frac{1}{3}$ (2) $\frac{4}{15}$		perpendicular to $\vec{b} = 3\hat{i} + \hat{j} - \hat{k}$ respectively, are
	(3) $\frac{2}{3}$ (4) $\frac{2}{5}$		$\frac{16}{11} \left(3\hat{i} + \hat{j} - \hat{k} \right) \text{ and } \frac{1}{11} \left(-4\hat{i} - 5\hat{j} - 17\hat{k} \right), \text{ then}$
Ans.	(2)		$\alpha^2 + \beta^2 + \gamma^2$ is equal to : (1) 22
Sol.	E_1 : Bag B_1 is selected		(1) 23 (2) 18 (2) 16 (4) 26
	B_1 B_2 B_3	Ans.	(3) 16 (4) 26 (4)
	6W 4B 4W 6B 5W 5B E ₂ : bag B ₂ is selected	Sol.	let
	E_2 : $Bag B_2$ is selected E_3: $Bag B_3$ is selected	501.	N G
	A : Drawn ball is white		\vec{a}_{11} = component of \vec{a} along \vec{b}
	We have to find $P\left(\frac{E_2}{A}\right)$		\vec{a}_1 = component of \vec{a} perpendicular to \vec{b}
	$P\left(\frac{E_2}{A}\right) = \frac{P(E_2)P\left(\frac{A}{E_2}\right)}{P(E_1)P\left(\frac{A}{E_1}\right) + P(E_2)P\left(\frac{A}{E_2}\right) + P(E_3)P\left(\frac{A}{E_3}\right)}$		$\vec{a}_{11} = \frac{16}{11} \left(3\hat{i} + \hat{j} - \hat{k} \right)$ $\vec{a}_1 = \frac{1}{11} \left(-4\hat{i} - 5\hat{j} - 17\hat{k} \right)$
	$-\frac{1}{3} \times \frac{1}{10}$		$\therefore \vec{a} = \vec{a}_{11} + \vec{a}_1$
	$=\frac{\frac{1}{3}\times\frac{4}{10}}{\frac{1}{3}\times\frac{6}{10}+\frac{1}{3}\times\frac{4}{10}+\frac{1}{3}\times\frac{5}{10}}$		$\therefore \vec{a} = \frac{16}{11} \left(3\hat{i} + \hat{j} - \hat{k} \right) + \frac{1}{11} \left(-4\hat{i} - 5\hat{j} - 17\hat{k} \right)$
	$=\frac{4}{15}$		$=\frac{44}{11}\hat{i}+\frac{11}{11}\hat{j}-\frac{33}{11}\hat{k}$
2.	Let A, B, C be three points in xy-plane, whose position vector are given by $\sqrt{3}\hat{i} + \hat{j}$, $\hat{i} + \sqrt{3}\hat{j}$ and		$\vec{a} = 4\hat{i} + \hat{j} - 3\hat{k}$
	$\hat{ai} + (1-a)\hat{j}$ respectively with respect to the origin		$\alpha = 4$ $\beta = 1$ $\gamma = -3$
	O. If the distance of the point C from the line		$\alpha^2 + \beta^2 + \gamma^2 = 16 + 1 + 9 = 26$
	bisecting the angle between the vectors \overrightarrow{OA} and	4.	If $\alpha + i\beta$ and $\gamma + i\delta$ are the roots of
	\overrightarrow{OB} is $\frac{9}{\sqrt{2}}$, then the sum of all the possible values		$x^2 - (3-2i)x - (2i-2) = 0$, $i = \sqrt{-1}$, then $\alpha \gamma + \beta \delta$ is
	of a is :		equal to : (1) 6 (2) 2
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} (1) \ 0 \\ (3) \ -2 \\ (4) \ -6 \\ \end{array}$
Ane	(3) 0 (4) 2 (1)	Ans.	
Ans.	(1)	- 1113.	(-)

Sol.
$$x^{2} - (3 - 2i)x - (2i - 2) = 0$$

$$x = \frac{(3 - 2i) \pm \sqrt{(3 - 2i)^{2} - 4(1)(-(2i - 2))}}{2(1)}$$

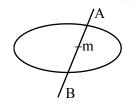
$$= = \frac{(3 - 2i) \pm \sqrt{9 - 4 - 12i + 8i - 8}}{2}$$

$$= \frac{3 - 2i \pm \sqrt{-3 - 4i}}{2}$$

$$= \frac{3 - 2i \pm \sqrt{-3 - 4i}}{2}$$

$$= \frac{3 - 2i \pm \sqrt{(1)^{2} + (2i)^{2} - 2(1)(2i)}}{2}$$

$$= \frac{3 - 2i \pm (1 - 2i)}{2}$$


$$\Rightarrow \frac{3 - 2i \pm (1 - 2i)}{2}$$

$$\Rightarrow \frac{3 - 2i + 1 - 2i}{2} \text{ or } \frac{3 - 2i - 1 + 2i}{2}$$

$$\Rightarrow 2 - 2i \text{ or } 1 + 0i$$
So $\alpha\gamma + \beta\delta = 2(1) + (-2)(0) = 2$
Solution of a chord of the ellipse $\frac{x^{2}}{9} + \frac{y^{2}}{4} = 1$ is $(\sqrt{2}, 4/3)$, and the length of the chord is $\frac{2\sqrt{\alpha}}{3}$, then α is :

Ans. (2) Sol.

(3) 26

(2) 22

(4) 20

If m
$$\left(\sqrt{2}, \frac{4}{3}\right)$$
 than equation of of AB is
 $T = S_1$
 $\frac{x\sqrt{2}}{9} + \frac{y}{4}\left(\frac{4}{3}\right) = \frac{\left(\sqrt{2}\right)^2}{9} + \frac{\left(\frac{4}{3}\right)^2}{4}$
 $\frac{\sqrt{2}x}{9} + \frac{y}{3} = \frac{2}{9} + \frac{4}{9}$

$$\sqrt{2}x + 3y = 6 \Rightarrow y = \frac{6 - \sqrt{2}x}{3} \text{ put in ellipse}$$
So, $\frac{x^2}{9} + \frac{\left(6 - \sqrt{2}x\right)^2}{9 \times 4} = 1$
 $4x^2 + 36 + 2x^2 - 12\sqrt{2}x = 36$
 $6x^2 - 12\sqrt{2}x = 0$
 $6x(x - 2\sqrt{2}) = 0$
 $x = 0 \& x = 2\sqrt{2}$
So $y = 2$ $y = \frac{2}{3}$
Length of chord $= \sqrt{\left(2\sqrt{2} - 0\right)^2 + \left(\frac{2}{3} - 2\right)^2}$
 $= \sqrt{8 + \frac{16}{9}}$
 $= \sqrt{\frac{88}{9}} = \frac{2}{3}\sqrt{22} \text{ so } [\alpha = 22]$

Let S be the set of all the words that can be formed by arranging all the letters of the word GARDEN. From the set S, one word is selected at random. The probability that the selected word will NOT have vowels in alphabetical order is :

(1) $\frac{1}{4}$	(2) $\frac{2}{3}$
(3) $\frac{1}{3}$	(4) $\frac{1}{2}$

Ans. (4)

the

6.

Probability (P) =
$$\frac{\text{favourable case}}{\text{Total case}}$$

(when A & E are in order)

Total case = 6!

Favourable case $= {}^{6}C_{2} \cdot 4!$

$$\mathbf{P} = \frac{(15)4!}{(30)4!}$$

Probablity when not in order = $1 - \frac{1}{2} = \frac{1}{2}$

OVER	SEAS		
7.	Let \overline{f} be a real valued continuous function defined		
	on the positive real axis such that $g(x) = \int_{0}^{x} tf(t) dt$.		
	If $g(x^3) = x^6 + x^7$, then value of $\sum_{r=1}^{15} f(r^3)$ is :		
	(1) 320	(2) 340	
	(3) 270	(4) 310	
Ans.	(4)		
Sol.	$g(x) = x2 + x^{\frac{7}{3}}$		
	$g'(x) = 2x + \frac{7}{3}x^{\frac{4}{3}}$		
	$f(x) = \frac{g'(x)}{x}$		
	$f(x) = 2 + \frac{7}{3}x^{\frac{1}{3}}$		9.
	$f(r^3) = 2 + \frac{7r}{3}$		
	$\sum_{r=1}^{15} \left(1 + \frac{7}{3}r \right) = 310$		
8.	The square of the distan	ce of the point $\left(\frac{15}{7}, \frac{32}{7}, 7\right)$	Ans. Sol.
	from the line $\frac{x+1}{3} = \frac{y}{3}$	$\frac{x+3}{5} = \frac{z+5}{7}$ in the direction	
	of the vector $\hat{i} + 4\hat{j} + 7\hat{k}$	is:	
	(1) 54	(2) 41	
	(3) 66	(4) 44	
Ans.	(3)		
Sol.	$P\left(\frac{15}{7}\right)$	$(\frac{32}{7},7)$	
	X	$\hat{i} + 4\hat{j} + 7\hat{k}$	
	Q	L	
	$L = \frac{x+1}{3} = \frac{y+3}{5} = \frac{z+3}{7}$	5	
	$PQ = \frac{x - \frac{15}{7}}{1} = \frac{y - \frac{32}{7}}{4} = $	$=\frac{z-7}{7}=\lambda$	

$\Rightarrow Q\left(\lambda + \frac{15}{7}, 4\lambda + \frac{32}{7}, 7\lambda + 7\right)$ Since Q lies on line L

So,
$$\frac{\lambda + \frac{15}{7} + 1}{3} = \frac{7\lambda + 7 + 5}{7}$$

 $\Rightarrow 7\lambda + 22 = 21 \lambda + 36$
 $\Rightarrow \lambda = -1$
 \therefore Point Q $\left(\frac{8}{7}, \frac{4}{7}, 0\right)$
PQ = $\sqrt{66}$
 $\Rightarrow (PQ)^2 = 66$
The area of the region bounded by the curves $x(1 + y^2) = 1$ and $y^2 = 2x$ is :
(1) $2\left(\frac{\pi}{2} - \frac{1}{3}\right)$ (2) $\frac{\pi}{4} - \frac{1}{3}$
(3) $\frac{\pi}{2} - \frac{1}{3}$ (4) $\frac{1}{2}\left(\frac{\pi}{2} - \frac{1}{3}\right)$
(3)
 $x (1 + y^2) = 1$ (1)
 $y^2 = 2x$ (2)
From equation (1) & (2)
 $x (1 + 2x) = 1 \Rightarrow 2x^2 + x - 1 = 0$
 $\Rightarrow x = \frac{1}{2}, x = -1$ (Reject)
 $\Rightarrow y^2 = 2\left(\frac{1}{2}\right)$
 $\Rightarrow y = \pm 1$

OVER	RSEAS	
	Area bounded = $\int_{-1}^{1} \left(\frac{1}{1+y^2} - \frac{y^2}{2} \right) dy$	
	$= \left(\left. \tan^{-1} y - \frac{y^3}{6} \right]_{-1}^{1}$	11.
	$=\frac{\pi}{2}-\frac{1}{3}$	
10.	Let $A = \begin{bmatrix} \frac{1}{\sqrt{2}} & -2\\ 0 & 1 \end{bmatrix}$ and $P = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}$, $\theta > 0$.	
	If $B = PAP^{T}$, $C = P^{T}B^{10}P$ and the sum of the	Ans
	diagonal elements of C is $\frac{m}{n}$, where gcd(m, n) =	Sol.
	1, then $m + n$ is :	
	(1) 65 (2) 127	
	(3) 258 (4) 2049	
Ans.	(1)	
Sol.	$\mathbf{P} = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}$	
	$\therefore P^{\mathrm{T}}P = I$	
	B = PAPT	.0
	Pre multiply by P^{T} (Given)	<i>(</i>)
	$P^{T}B = P^{T}P AP^{T} = AP^{T}$	
	Now post multiply by P $P^{T}BP = AP^{T}P = A$	
	So $A^2 = \underbrace{P^T B P P^T}_{I} B P$	
	$\mathbf{A}^2 = \mathbf{P}^{\mathrm{T}} \mathbf{B}^2 \mathbf{P}$	
	Similarly $A^{10} = P^T B^{10} P = C$	
	$A = \begin{bmatrix} \frac{1}{\sqrt{2}} & -2\\ 0 & 1 \end{bmatrix}$ (Given)	12.
	$\Rightarrow A^{2} = \begin{bmatrix} \frac{1}{2} & -\sqrt{2} - 2\\ 0 & 1 \end{bmatrix}$	
	Similarly check A^3 and so on since $C = A^{10}$	
	\Rightarrow Sum of diagonal elements of C is $\left(\frac{1}{\sqrt{2}}\right)^{10} + 1$	Ans

$$= \frac{1}{32} + 1 = \frac{33}{32} = \frac{m}{n}$$

g cd(m,n) = 1 (Given)
 $\Rightarrow m + n = 65$
If $f(x) = \int \frac{1}{x^{1/4}(1+x^{1/4})} dx$, $f(0) = -6$, then $f(1)$ is
equal to :
(1) $\log_{2}2 + 2$ (2) $4(\log_{2}2 - 2)$
(3) $2 - \log_{2}2$ (4) $4(\log_{2}2 + 2)$
as. (2)
I. let $x = t^{4}$
 $dx = 4t^{3} dt$
then $\int \frac{1}{x^{\frac{1}{4}}(1+x^{\frac{1}{4}})} dx \Rightarrow \int \frac{4t^{3}dt}{t(1+t)}$
 $\Rightarrow \int \frac{4t}{1+t} dt \Rightarrow 4\int \frac{(t^{2}-1)+1}{1+t} dt$
 $\Rightarrow 4\int (t-1) + \frac{1}{t+1} dt$
 $\Rightarrow 4\int (t-1) + \frac{1}{t+1} dt$
 $\Rightarrow 4\left\{\frac{(t-1)^{2}}{2} + ln(t+1)\right\} + c$
hence $f(x) = 2\left(x^{\frac{1}{4}} - 1\right)^{2} + 4ln\left(1 + x^{\frac{1}{4}}\right) + c$
 $f(0) = -6 \Rightarrow 2 + 4ln + 6 = -6 \rightarrow C = -8$
now $f(1) = 4ln 2 - 8$
 $= 4(ln2 - 2)$
Let $f : R \rightarrow R$ be a twice differentiable function
such that $f(2) = 1$. If $F(x) = xf(x)$ for all $x \in R$,
 $\int_{0}^{2} xF'(x)dx = 6$ and $\int_{0}^{2} x^{2}F''(x)dx = 40$, then
 $F'(2) + \int_{0}^{2} F(x)dx$ is equal to :

(1) 11 (2) 15

Ans. (1)

Sol.
$$\int_{0}^{2} xF'(x) dx = 6$$

= $xF(x)\Big|_{0}^{2} - \int_{0}^{2} f(x) dx = 6$
= $2F(2) - \int_{0}^{2} xF(x) dx = 6$ [\therefore f(2) = $2F(2) = 2$]
 $\int_{0}^{2} xF(x) dx = -2$... (1)
 $\Rightarrow \int_{0}^{2} F(x) dx = -2$... (2)
Also
 $\int_{0}^{2} x^{2}F''(x) dx = x^{2}F'(x)\Big|_{0}^{2} - 2\int_{0}^{2} xF'(x) dx = 40$
= $4F'(2) - 2 \times 6 = 40$
 $F'(2) = 13$
 $\therefore F'(2) + \int_{0}^{2} F(x) = 13 - 2 = 11$

13. For positive integers n, if
$$4a_n = (n^2 + 5n + 6)$$
 and

$$S_{n} = \sum_{k=1}^{n} \left(\frac{1}{a_{k}}\right), \text{ then the value of 507 } S_{2025} \text{ is :}$$
(1) 540 (2) 1350
(3) 675 (4) 135

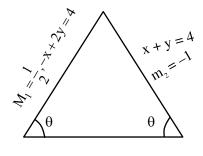
Ans. (3)

Sol.
$$a_n = \frac{n^2 + 5n + 6}{4}$$

 $S_n = S_n = \sum_{k=1}^n \frac{1}{a_k} = \sum_{1}^n \frac{4}{k^2 + 5k + 6}$
 $= 4 \sum_{k=1}^n \frac{1}{(k+2)(k+3)}$
 $= 4 \sum_{k=1}^n \frac{1}{k+2} - \frac{1}{k+3}$
 $= 4 \left(\frac{1}{3} - \frac{1}{4}\right) + 4 \left(\frac{1}{4} - \frac{1}{5}\right) + \dots$

$$4\left(\frac{1}{n+2} - \frac{1}{n+3}\right) = 4\left(\frac{1}{3} - \frac{1}{n+3}\right) = 4\left(\frac{1}{3} - \frac{1}{n+3}\right) = \frac{4n}{3(n+3)} = \frac{4n}{3(n+3)} = \frac{675}{3(2028)} = 675$$
14. Let $f: [0, 3] \to A$ be defined by $f(x) = 2x^3 - 15x^2 + 36x + 7$ and $g: [0, \infty) \to B$ be defined by $g(x) = \frac{x^{2025}}{x^{2025} + 1}$. If both the functions are onto and $S = \{x \in \mathbb{Z} : x \in A \text{ or } x \in B\}$, then n (S) is equal to:
(1) 30 (2) 36 (3) 29 (4) 31
Ans. (1)
Sol. as f(x) is onto hence A is range of f(x) now f'(x) = 6x^2 - 30x + 36 = 6(x-2)(x-3) f(2) = 16 - 60 + 72 + 7 = 35 f(3) = 54 - 135 + 108 + 7 = 34 f(0) = 7
hence range $\in [7,35] = A$
also for range of $g(x)$
 $g(x) = 1 - \frac{1}{x^{2025} + 1} \in [0,1] = B$
 $s = \{0, 7, 8, \dots, 35\}$ hence n(s) = 30
15. Let [x] denote the greatest integer less than or equal to x. Then domain of $f(x) = \sec^{-1}(2[x]+1)$ is :
(1) $(-\infty, -1] \cup [0, \infty)$
(2) $(-\infty, -\infty)$
(3) $(-\infty, -1] \cup [1, \infty)$
(4) $(-\infty, \infty] - \{0\}$
Ans. (2)
Sol. $2[x] + 1 \le -1$ or $2[x] + 1 \ge 1$
 $\Rightarrow [x] \le -1 \cup [x] \ge 0$
 $\Rightarrow x \in (-\infty, 0) \cup x \in [0, \infty)$

$$\Rightarrow \mathbf{X} \in (-\infty, \infty)$$
16. If $\sum_{r=1}^{13} \left\{ \frac{1}{\sin\left(\frac{\pi}{4} + (r-1)\frac{\pi}{6}\right)\sin\left(\frac{\pi}{4} + \frac{r\pi}{6}\right)} \right\} = a\sqrt{3} + b$,
a, b $\in \mathbf{Z}$, then $a^2 + b^2$ is equal to :
(1) 10 (2) 2
(3) 8 (4) 4


Ans. (3)

Sol.
$$\frac{1}{\sin\frac{\pi}{6}} \sum_{r=1}^{13} \frac{\sin\left[\left(\frac{\pi}{4} + \frac{r\pi}{6}\right) - \left(\frac{\pi}{4}\right) - (r-1)\frac{\pi}{6}\right]}{\sin\left(\frac{\pi}{4} + (r-1)\frac{\pi}{6}\right)\sin\left(\frac{\pi}{4} + \frac{r\pi}{6}\right)}$$
$$\frac{1}{\sin\frac{\pi}{6}} \sum_{r=1}^{13} \left(\cot\left(\frac{\pi}{4} + (r-1)\frac{\pi}{6}\right) - \cot\left(\frac{\pi}{4} + \frac{r\pi}{6}\right)\right)$$
$$= 2\sqrt{3} - 2 = \alpha\sqrt{3} + b$$
So $a^2 + b^2 = 8$

17. Two equal sides of an isosceles triangle are along -x + 2y = 4 and x + y = 4. If m is the slope of its third side, then the sum, of all possible distinct values of m, is :

 $(4) - 2\sqrt{10}$

Ans. (3) Sol.

$$\tan \theta = \frac{m - \frac{1}{2}}{1 + \frac{1}{2} \cdot m} = \frac{-1 - m}{1 - m} = \frac{m + 1}{m - 1}$$
$$\frac{2m - 1}{2 + m} = \frac{m + 1}{m - 1}$$

$$2m^{2}-3m + 1 = m^{2} + 3m + 2$$

 $m^{2}-6m - 1 = 0$
sum of root = 6
sum is 6

18. Let the coefficients of three consecutive terms T_r , T_{r+1} and T_{r+2} in the binomial expansion of $(a + b)^{12}$ be in a G.P. and let p be the number of all possible values of r. Let q be the sum of all rational terms in the binomial expansion of $(\sqrt[4]{3} + \sqrt[3]{4})^{12}$. Then p + q is equal to :

Ans. (1)

Sol.
$$(a+b)^{\frac{1}{2}}$$

T_r, T_{r+1}, T_{r+2} → GP
So,
$$\frac{T_{r+1}}{T_r} = \frac{T_{r+2}}{T_{r+1}}$$

 $\frac{{}^{12}C_r}{{}^{12}C_{r-1}} = \frac{{}^{12}C_{r+1}}{{}^{12}C_r}$
 $\frac{12 - r + 1}{r} = \frac{12 - (r + 1) + 1}{r + 1}$
(13 - r) (r + 1) = (12 - r) (r)
- r + 12 r + 13 = 12 r - r²
13 = 0

No value of r possible

So P = 0

$$\left(3^{\frac{1}{4}}+4^{\frac{1}{3}}\right)^{12} = \sum {}^{12}C_{r} \left(3^{\frac{1}{4}}\right)^{12-r} \left(4^{\frac{1}{3}}\right)^{r}$$

Exponent of $\left(3^{\frac{1}{4}}\right)$ exponent of $\left(4^{\frac{1}{3}}\right)$ term
$$12 \qquad 0 \qquad 27 \\ 0 \qquad 12 \qquad 256 \\ q = 27 + 256 = 283 \\ p + q = 0 + 283 = 283$$

🗘 ALLEN

JEE-Main Exam Session-1 (January 2025)/28-01-2025/Evening Shift

If A and B are the points of intersection of the 19. circle $x^2 + y^2 - 8x = 0$ and the hyperbola $\frac{x^2}{9} - \frac{y^2}{4} = 1$ and a point P moves on the line 2x - 3y + 4 = 0, then the centroid of $\triangle PAB$ lies on the line : (1) 4x - 9y = 12(2) x + 9y = 36(3) 9x - 9y = 32(4) 6x - 9y = 20

Sol.
$$x^{2} + y^{2} - 8x = 0, \frac{x^{2}}{9} - \frac{y^{2}}{4} = 1$$
 (1)
 $4x^{2} - 9y^{2} = 36$ (2)
Solve (1) & (2)
 $4x^{2} - 9 (8x - x^{2}) = 36$
 $13x^{2} - 72x - 36 = 0$
 $(13x + 6) (x = 6) = 0$
 $x = \frac{-6}{13}, x = 6$
 $x = \frac{-6}{13}$ (rejected)
 $y \rightarrow$ Imaginary
 $n = 6, \frac{36}{9} - \frac{y^{2}}{4} = 1$
 $y^{2} = 12, y = I\sqrt{12}$
 $A(6,\sqrt{12}), B(6, -\sqrt{12})$
 $p(\alpha, \frac{2\alpha + 4}{3})P$ lies on
centroid (h,k) $2x - 3y + y = 0$
 $h = \frac{12 + \alpha}{3}, \alpha = 3h - 12$
 $k = \frac{\frac{2\alpha + 4}{3}}{3} \Rightarrow 2\alpha + 4 = 9k$
 $\alpha = \frac{9k - 4}{2}$
 $6h - 2y = 9k - 4$
 $6x - 9y = 20$

20.	Let $f : \mathbf{R} - \{0\} \rightarrow (-\infty, 1)$ be a polynomial of		
	degree 2, satisfying $f(x)f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right)$. If		
	f(K) = -2K, then the sum of squares of all possible		
	values of K is :		
	(1) 1 (2) 6		
	(3) 7 (4) 9		
Ans.	(2)		
Sol.	as $f(x)$ is a polynomial of degree two let it be		
	$f(x) = ax^2 + bx + c (a \neq 0)$		
	on satisfying given conditions we get		
	$C = 1 \& a = \pm 1$		
	hence $f(x) = 1 \pm x^2$		
	also range $\in (-\infty, 1]$ hence		
	$f(x) = 1 - x^2$		
	now $f(k) = -2k$		
	$1 - k^2 = -2k \rightarrow k^2 - 2k - 1 = 0$		
	let roots of this equation be $\alpha \& \beta$		
	then $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 2(-1) = 6$		

SECTION-B

21. The number of natural numbers, between 212 and 999, such that the sum of their digits is 15, is

Ans. (64)

```
Sol.
          x y z
        Let x = 2 \Rightarrow y + z = 13
        (4,9), (5,8), (6,7), (7,6), (8,5), (9,4), \rightarrow 6
        Let x = 3 \rightarrow y + z = 12
        (3,9), (4,8), \dots, (9,3) \rightarrow 7
        Let x = 4 \rightarrow y + z = 11
        (2,9), (3,8), \dots, (9,1) \rightarrow 9
        Let x = 5 \rightarrow y + z = 10
        (1,9), (2,8), \dots, (9,1) \rightarrow 10
        Let x = 6 \rightarrow y + z = 9
        (0,9), (1,8), \dots, (9,0) \rightarrow 9
        Let x = 7 \rightarrow y + z = 8
        (0,9), (1,7), \dots, (8,0) \rightarrow 9
        Let x = 8 \rightarrow y + z = 7
        (0,7), (1,6), \dots, (7,0) \rightarrow 8
        Let x = 9 \rightarrow y + z = 6
        (0,6), (1,5), \dots, (6,0) \rightarrow 7
        Total = 6 = 7 + 8 + 9 + 10 + 9 + 8 + 7 = 64
```

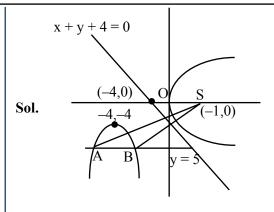
ALLEN

JEE-Main Exam Session-1 (January 2025)/28-01-2025/Evening Shift

22. Let
$$f(x) = \lim_{n \to \infty} \sum_{r=0}^{n} \left(\frac{\tan(x/2^{r+1}) + \tan^{3}(x/2^{r+1})}{1 - \tan^{2}(x/2^{r+1})} \right)$$

Then $\lim_{x \to 0} \frac{e^{x} - e^{f(x)}}{(x - f(x))}$ is equal to _____.

Ans. (1)


Sol.
$$f(x) = \lim_{n \to \infty} \sum_{r=0}^{n} \left(\tan \frac{x}{2^r} - \tan \frac{x}{2^{r+1}} \right) = \tan x$$
$$\lim_{x \to 0} \left(\frac{e^x - e^{\tan x}}{x - \tan x} \right) = \lim_{x \to 0} e^{\tan x} \frac{\left(e^{x - \tan x} - 1 \right)}{\left(x - \tan x \right)}$$
$$= 1$$

23. The interior angles of a polygon with n sides, are in an A.P. with common difference 6°. If the largest interior angle of the polygon is 219°, then n is equal to _____.

Sol.
$$\frac{n}{2}(2a + (n-1)6) = (n-2).180^{\circ}$$

 $an + 3n^{2} - 3n = (n-2).180^{\circ}$...(1)
Now according to question
 $a + (n-1)6^{\circ} = 219^{\circ}$
 $\Rightarrow a = 225^{\circ} - 6n^{\circ}$...(2)
Putting value of a from equation (2) in (1)
We get
 $(225n - 6n^{2}) + 3n^{2} - 3n = 180n - 360$
 $\Rightarrow 2n^{2} - 42n - 360 = 0$
 $\Rightarrow n2 - 14n - 120 = 0$

$$n = 20, -6$$
(rejected)

24. Let A and B be the two points of intersection of the line y + 5 = 0 and the mirror image of the parabola $y^2 = 4x$ with respect to the line x + y + 4 = 0. If d denotes the distance between A and B, and a denotes the area of Δ SAB, where S is the focus of the parabola $y^2 = 4x$, then the value of (a + d) is

Area =
$$\frac{1}{2} \times 4 \times 5 = 10 = a$$

6 = 4
So a + d = 14

25. If y = y(x) is the solution of the differential equation,

$$\sqrt{4 - x^2} \frac{dy}{dx} = \left(\left(\sin^{-1} \left(\frac{x}{2} \right) \right)^2 - y \right) \sin^{-1} \left(\frac{x}{2} \right),$$

$$-2 \le x \le 2, \ y(2) = \left(\frac{\pi^2 - 8}{4} \right), \text{ then } y^2(0) \text{ is equal to}$$

Sol.
$$\frac{dy}{dx} + \frac{\left(\sin^{-1}\frac{x}{2}\right)}{\sqrt{4 - x^2}}y = \frac{\left(\sin^{-3}\frac{x}{2}\right)^3}{\sqrt{4 - x^2}}$$

 $y e^{\frac{\left(\sin^{-1}\frac{x}{2}\right)^2}{2}} = \int \frac{\left(\sin^{-3}\frac{x}{2}\right)^3}{4 - x^2}e^{\frac{\left(\sin^{-1}\frac{x}{2}\right)^2}{2}}dx$

$$y = \left(\sin^{-1}\frac{x}{2}\right)^2 - 2 + c.e^{\frac{x}{2}}$$
$$y(2) = \frac{\pi^2}{4} - 2 \Rightarrow c = 0$$

$$y(0) = -2$$

Ans. (14)