JEE-MAIN EXAMINATION - JANUARY 2025			
(HE	LD ON WEDNESDAY 22 nd JANUARY 2025)		TIME: 3:00 PM TO 6:00 PM
	MATHEMATICS		TEST PAPER WITH SOLUTION
	SECTION-A	Sol.	Total – when B_1 and B_2 are together
1.	Let α , β , γ and δ be the coefficients of x^7 , x^5 , x^3 and		= 2!(3! 4!) - 2! (3!(3! 2!)) = 144
	x respectively in the expansion of	3.	Let $P(4, 4\sqrt{3})$ be a point on the parabola $y^2 = 4ax$
	$\left(x + \sqrt{x^3 - 1}\right)^5 + \left(x - \sqrt{x^3 - 1}\right)^5$, $x > 1$. If u and v		and PQ be a focal chord of the parabola. If M and
	satisfy the equations		N are the foot of perpendiculars drawn from P and
	$\alpha \mathbf{u} + \beta \mathbf{v} = 18,$		Q respectively on the directrix of the parabola,
	$\gamma u + \delta v = 20,$		then the area of the quadrilateral PQMN is equal
	then $u + v$ equals :		to:
	(1) 5 (2) 4		(1) $\frac{263\sqrt{3}}{8}$ (2) $17\sqrt{3}$
	(3) 3 (4) 8		(1) $\frac{263\sqrt{3}}{8}$ (2) $17\sqrt{3}$ (3) $\frac{343\sqrt{3}}{8}$ (4) $\frac{34\sqrt{3}}{3}$
Ans.	(1)		0
Sol.	$\left(x + \sqrt{x^3 - 1}\right)^5 + \left(x - \sqrt{x^3 - 1}\right)^5$	Ans.	
	$= 2\{{}^{5}C_{0}.x^{5} + {}^{5}C_{2}.x^{3}(x^{3} - 1) + {}^{5}C_{4}.x(x^{3} - 1)^{2}\}$	Sol.	P(4,4 (3)
	$= 2\{5x^{7} + 10x^{6} + x^{5} - 10x^{4} - 10x^{3} + 5x\}$	8	M
	$\Rightarrow \alpha = 10, \beta = 2, \gamma = -20, \delta = 10$		- O $/S$
	Now, $10u + 2v = 18$		
	-20u + 10v = 20		
	\Rightarrow u = 1, v = 4		$(4, 4\sqrt{3})$ lies on $y^2 = 4ax$ $\Rightarrow 48 = 4a.4$
	u + v = 5		4a = 12 $\Rightarrow y^2 = 12x$ is equation of parabola
2			Now, parameter of P is $t_1 = \frac{2}{\sqrt{3}} \Rightarrow$ Parameters of
2.	In a group of 3 girls and 4 boys, there are two boys		Ų J
	B_1 and B_2 . The number of ways, in which these		Q is $t_2 = -\frac{\sqrt{3}}{2} \Rightarrow Q\left(\frac{9}{4}, -3\sqrt{3}\right)$
	girls and boys can stand in a queue such that all the		Area of trapezium PQNM
	girls stand together, all the boys stand together, but		$=\frac{1}{2}MN.(PM+QN)$
	$B_1 \mbox{ and } B_2 \mbox{ are not adjacent to each other, is : }$		$=\frac{1}{2}$ MN.(PS + QS)
	(1) 144 (2) 72		$=\frac{1}{2}$ MN. PQ
	(3) 96 (4) 120		2
Ans.	(1)		$=\frac{1}{2}7\sqrt{3}.\frac{49}{4}=(343)\frac{\sqrt{3}}{8}=3$

🗅 ALLEN

JEE-Main Exam Session-1 (January 2025)/22-01-2025/Evening Shift

For a 3×3 matrix M, let trace (M) denote the sum 4. of all the diagonal elements of M. Let A be a 3×3 matrix such that $|A| = \frac{1}{2}$ and trace (A) = 3. If

> B = adj(adj(2A)), then the value of |B| + trace (B)equals:

- (1)56(2) 132
- (3) 174(4) 280

Ans. (4)

- **Sol.** $|A| = \frac{1}{2}$, trace(A) = 3, B = adj(adj(2A)) = $|2A|^{n-2}(2A)$ n = 3, $B = |2A|(2A) = 2^3$.|A|(2A) = 8A $|\mathbf{B}| = |8\mathbf{A}| = 8^3 |\mathbf{A}| = 2^8 = 256$ trace(B) = 8 trace(A) = 24|B| + trace(B) = 280
- 5. Suppose that the number of terms in an A.P. is 2k, $k \in \mathbb{N}$. If the sum of all odd terms of the A.P. is 40, the sum of all even terms is 55 and the last term of the A.P. exceeds the first term by 27, then k is equal to
 - (1)5(2) 8(4) 4(3) 6

Ans. (1)

- **Sol.** $a_1, a_2, a_3, \ldots, a_{2k}$ $\sum_{r=1}^{k} a_{2r-1} = 40, \ \sum_{r=1}^{k} a_{2r} = 55, \ a_{2k} - a_{1} = 27$ $\frac{k}{2}[2a_1 + (k-1)2d] = 40, \frac{k}{2}[2a_2 + (k-1)2d] = 55,$ $d = \frac{27}{2k - 1}$ $a_1 = \frac{40}{1} - (k-1)d = \frac{55}{k} - kd$ $d = \frac{15}{k} \Rightarrow \frac{27}{2k-1} = \frac{15}{k} \Rightarrow 9k = 10k-5$ $\therefore k = 5$
- Let a line pass through two distinct points 6. P(-2, -1, 3) and Q, and be parallel to the vector $3\hat{i}+2\hat{j}+2k$. If the distance of the point Q from the point R(1, 3, 3) is 5, then the square of the area of ΔPQR is equal to:

	(1) 136	(2) 140
	(3) 144	(4) 148
Ans.	(1)	

 \overrightarrow{PO} parallel to $3\hat{i}+2\hat{j}+2\hat{k}$, R(1, 3, 3) Sol. \Rightarrow Q(3 λ - 2, 2 λ - 1, 2 λ + 3), $\lambda \in \mathbb{R} - \{0\}$ $\left|\overrightarrow{\mathrm{QR}}\right| = 5 = \sqrt{(3\lambda - 3)^2 + (2\lambda - 4)^2 + (2\lambda)^2}$ $\therefore 17\lambda^2 - 34\lambda + 25 = 25 \Longrightarrow \lambda = 2(\because \lambda \neq 0)$ \therefore Q(4, 3, 7), P(-2, -1, 3), R(1, 3, 3) Area of $\triangle PQR = [PQR] = \frac{1}{2} |\overrightarrow{PQ} \times \overrightarrow{PR}|$ $[PQR] = \frac{1}{2} \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 6 & 4 & 4 \\ 3 & 4 & 0 \end{vmatrix} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 2 & 2 \\ 3 & 4 & 0 \end{vmatrix}$ $[PQR] = |-8\hat{i} + 6\hat{j} + 6\hat{k}| = \sqrt{136}$ $\therefore [PQR]^2 = 136$ If $\lim_{x \to \infty} \left(\left(\frac{e}{1-e} \right) \left(\frac{1}{e} - \frac{x}{1+x} \right) \right)^x = \alpha$, then the value of $\frac{\log_e \alpha}{1 + \log_e \alpha}$ equals : (1) e $(2) e^{-2}$ (3) e^2 $(4) e^{-1}$ Ans. (1) **Sol.** $\alpha = \lim_{x \to \infty} \left(\left(\frac{e}{1-e} \right) \left(\frac{1}{e} - \frac{x}{1+x} \right) \right)^x$ (1^{\infty} form) $\cdot \alpha = e^{L}$ Where $L = \lim_{x \to \infty} x \left(\left(\frac{e}{1-e} \right) \left(\frac{1}{e} - \frac{x}{1+x} \right) - 1 \right)$ $\Rightarrow L = \lim_{x \to \infty} \left(\frac{e}{1-e} \right) x \left(\frac{1}{e} - \frac{x}{1+x} - \left(\frac{1-e}{e} \right) \right)$ \Rightarrow L = $\frac{e}{1-e} \lim_{x \to \infty} x \left(1 - \frac{x}{1+x} \right)$ \Rightarrow L = $\frac{e}{1-e} \lim_{x \to \infty} \frac{x}{x+1}$ $\Rightarrow L = \frac{e}{1-e}.1$ \Rightarrow L = $\frac{e}{1-e}$ $\therefore \alpha = e^{\frac{e}{1-e}} \Rightarrow \log \alpha = \frac{e}{1-e}$ $\therefore \text{ Required value} = \frac{\frac{e}{1-e}}{1+\frac{e}$

7.

ALIEN 0

JEE-Main Exam Session-1 (January 2025)/22-01-2025/Evening Shift

8. Let
$$f(x) = \int_{0}^{x^{2}} \frac{t^{2} - 8t + 15}{e^{t}} dt$$
, $x \in \mathbf{R}$. Then the
numbers of local maximum and local minimum
points of f, respectively, are :
(1) 2 and 3 (2) 3 and 2
(3) 1 and 3 (4) 2 and 2
Ans. (1)
Sol. $f'(x) = \left(\frac{x^{4} - 8x^{2} + 15}{e^{x^{2}}}\right)(2x)$
 $= \frac{(x^{2} - 3)(x^{2} - 5)(2x)}{e^{x^{2}}}$
 $= \frac{(x - \sqrt{3})(x + \sqrt{3})(x - \sqrt{5})(x + \sqrt{5})2x}{e^{x^{2}}}$
 $= \frac{(x - \sqrt{3})(x + \sqrt{3})(x - \sqrt{5})(x + \sqrt{5})2x}{e^{x^{2}}}$
 $= \frac{(x - \sqrt{3})(x + \sqrt{3})(x - \sqrt{5})(x + \sqrt{5})2x}{e^{x^{2}}}$
 $= \frac{(x - \sqrt{3}, \sqrt{3} + \sqrt{3})}{\sqrt{3} \sqrt{5}}$
Maxima at $x \in \{-\sqrt{3}, \sqrt{3}\}$
Minima at $x \in \{-\sqrt{3}, \sqrt{3}\}$
Minima at $x \in \{-\sqrt{3}, \sqrt{3}\}$
Maxima at $x \in \{-\sqrt{3}, \sqrt{3}\}$
Minima at $x \in \{-\sqrt{3}, \sqrt{3}\}$
Minima at $x \in \{-\sqrt{3}, \sqrt{3}\}$
Maxima at $x \in \{-\sqrt{3}, \sqrt{3}\}$
Maxima at $x \in \{-\sqrt{3}, \sqrt{3}\}$
Minima at $x \in \{-\sqrt{3}, \sqrt{3}\}$
Minima at $x \in \{-\sqrt{3}, \sqrt{3}\}$
Minima $x \in \{-\sqrt{3}, \sqrt{3}\}$
Minima

0. If
$$x = f(y)$$
 is the solution of the differential equation
 $(1 + y^2) + (x - 2e^{um^{-1}y}) \frac{dy}{dx} = 0, y \in (-\frac{\pi}{2}, \frac{\pi}{2})$
with $f(0) = 1$, then $f(\frac{1}{\sqrt{3}})$ is equal to :
(1) $e^{\pi/4}$ (2) $e^{\pi/12}$
(3) $e^{\pi/3}$ (4) $e^{\pi/6}$
uns. (4)
ol. $\frac{dx}{dy} + \frac{x}{1 + y^2} = \frac{2e^{um^{-1}y}}{1 + y^2}$
I.F. $= e^{um^{-1}y}$
 $xe^{um^{-1}y} = \int \frac{2(e^{um^{-1}y})^2 dy}{1 + y^2}$
Put $\tan^{-1}y = t, \frac{dy}{1 + y^2} = dt$
 $xe^{um^{-1}y} = \int 2e^{2t}dt$
 $xe^{um^{-1}y} = \int 2e^{2t}dt$
 $xe^{um^{-1}y} = e^{2um^{-1}y} + c$
 $x = e^{am^{-1}y} + ce^{-um^{-1}y}$
 $\because y = 0, x = 1$
 $1 = 1 + c \Rightarrow c = 0$
 $y = \frac{1}{\sqrt{3}}, x = e^{\pi/6}$
I. If $\int e^x \left(\frac{x \sin^{-1}x}{\sqrt{1 - x^2}} + \frac{\sin^{-1}x}{(1 - x^2)^{3/2}} + \frac{x}{1 - x^2}\right) dx = g(x) + C$,
where C is the constant of integration, then $g(\frac{1}{2})$
equals :
(1) $\frac{\pi}{6}\sqrt{\frac{e}{2}}$ (2) $\frac{\pi}{4}\sqrt{\frac{e}{2}}$
(3) $\frac{\pi}{6}\sqrt{\frac{e}{3}}$ (4) $\frac{\pi}{4}\sqrt{\frac{e}{3}}$
uns. (3)
ol. $\because \frac{d}{dx} \left(\frac{x \sin^{-1}x}{\sqrt{1 - x^2}}\right) = \frac{\sin^{-1}x}{(1 - x^2)^{3/2}} + \frac{x}{1 - x^2}$
 $\Rightarrow \int e^x \left(\frac{x \sin^{-1}x}{\sqrt{1 - x^2}} + c = g(x) + C$
Note : assuming $g(x) = \frac{xe^x \sin^{-1}x}{\sqrt{1 - x^2}}$

OVER	RSEAS	
		estion we will not get a
	unique function $g(x)$, b	out in order to match the
	answer we will have to a	ssume $g(x) = \frac{xe^x \sin^{-1} x}{\sqrt{1-x^2}}$.
12.	Let α_{θ} and β_{θ} be	the distinct roots of
	$2x^2 + (\cos\theta)x - 1 = 0, \ \theta$	\in (0, 2 π). If m and M are
	the minimum and the ma	aximum values of $\alpha_{\theta}^4 + \beta_{\theta}^4$,
	then $16(M + m)$ equals :	
	(1) 24	(2) 25
	(3) 27	(4) 17
Ans.	(2)	
Sol.	$(\alpha^2 + \beta^2)^2 - 2 \alpha^2 \beta^2$	
	$[(\alpha + \beta)^2 - 2\alpha\beta]^2 - 2(\alpha\beta)$) ²
	$\left[\frac{\cos^2\theta}{4}+1\right]^2-2.\frac{1}{4}$	
	$\left(\frac{\cos^2\theta}{4}+1\right)^2-\frac{1}{2}$	
	$M = \frac{25}{16} - \frac{1}{2} = \frac{17}{16}$	
	$m = \frac{1}{2}, 16(M + m) = 25$	
13.	Let $A = \{1, 2, 3, 4\}$ and $[$	$B = \{1, 4, 9, 16\}$. Then the
	number of many-one functions $f : A \rightarrow B$ such that	
	$1 \in f(A)$ is equal to :	
	(1) 127	(2) 151
	(3) 163	(4) 139
Ans.	(2)	
Sol.	$Total = 4^4$	
	One-one = 4!	
	Many-one $= 256 - 24 = 2$	232
	Many-one which $1 \notin f(A)$	L)

= 3.3.3.3 = 81

232 - 81 = 151

14. If the system of linear equations :

$$x + y + 2z = 6$$
,
 $2x + 3y + az = a + 1$,
 $-x - 3y + bz = 2b$,

where $a, b \in \mathbf{R}$, has infinitely many solutions, then

$$7a + 3b$$
 is equal to :

Ans. (3)

Sol.
$$\Delta = \begin{vmatrix} 1 & 1 & 2 \\ 2 & 3 & a \\ -1 & -3 & b \end{vmatrix} = 0$$

$$\Rightarrow 2a + b - 6 = 0 \qquad \dots \dots \dots (1)$$

$$\Delta_1 = \begin{vmatrix} 1 & 1 & 6 \\ 2 & 3 & a + 1 \\ -1 & -3 & 2b \end{vmatrix} = 0$$

$$\Rightarrow a + b - 8 = 0 \qquad \dots \dots \dots (2)$$

Solving (1) + (2)

$$a = -2, b = 10$$

$$\Rightarrow 7a + 3b = 16$$

15. Let \vec{a} and \vec{b} be two unit vectors such that the angle between them is $\frac{\pi}{3}$. If $\lambda \vec{a} + 2\vec{b}$ and $3\vec{a} - \lambda \vec{b}$ are perpendicular to each other, then the number of values of λ in [-1, 3] is :

(1) 3	(2) 2
-------	-------

Ans. (4)

Sol.
$$\hat{a}.\hat{b} = \frac{1}{2}$$

Now $(\lambda \hat{a} + 2\hat{b}).(3\hat{a} - \lambda \hat{b}) = 0$
 $3\lambda \hat{a}.\hat{a} - \lambda^2 \hat{a}.\hat{b} + 6\hat{a}.\hat{b} - 2\lambda \hat{b}.\hat{b} = 0$
 $3\lambda - \frac{\lambda^2}{2} + 3 - 2\lambda = 0$
 $\lambda^2 - 2\lambda - 6 = 0$
 $\lambda = 1 \pm \sqrt{7}$
 \Rightarrow number of values = 0

JEE-Main Exam Session-1 (January 2025)/22-01-2025/Evening Shift

OVERSEAS		
16.	Let E : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, a >	$b \text{ and } H : \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1.$
	Let the distance between	the foci of E and the foci
	of H be $2\sqrt{3}$. If $a - A$	= 2, and the ratio of the
	eccentricities of E and H	is $\frac{1}{3}$, then the sum of the
	lengths of their latus rect	ums is equal to :
	(1) 10	(2) 7
	(3) 8	(4) 9
Ans.	(3)	
Sol.	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ foci are (ae,	0) and (-ae, 0)
	$\frac{x^2}{A^2} + \frac{y^2}{B^2} = 1$ foci are (Ad	e', 0) and (–Ae', 0)
	$\Rightarrow 2ae = 2\sqrt{3} \Rightarrow ae = \sqrt{3}$	√3
	and $2Ae' = 2\sqrt{3} \implies Ae'$	$=\sqrt{3}$
	\Rightarrow ae = Ae' $\Rightarrow \frac{e}{e'} = \frac{A}{a}$	

🗘 ALLEN

 $\Rightarrow \frac{1}{3} = \frac{A}{a} \Rightarrow a = 3A$ Now $a = A = 2 \Rightarrow a = \frac{a}{2} \Rightarrow a = 3A$

Now
$$a - A = 2 \implies a - \frac{a}{3} - 2 \implies a = 3$$
 and $A = 1$

Ae =
$$\sqrt{3} \Rightarrow$$
 e = $\frac{1}{\sqrt{3}}$ and e' = $\sqrt{3}$
b² = a²(1 - e²)
b² = 6
and B² = A²((e')² - 1) = (2) \Rightarrow B² = 2
sum of LR = $\frac{2b^2}{a} + \frac{2B^2}{A} = 8$

17. If A and B are two events such that $P(A \cap B) = 0.1$, and P(A|B) and P(B|A) are the roots of the equation $12x^2 - 7x + 1 = 0$, then the value of $\frac{P(\overline{A} \cup \overline{B})}{P(\overline{A} \cap \overline{B})}$ is: (1) $\frac{5}{3}$ (2) $\frac{4}{3}$ (3) $\frac{9}{4}$ (4) $\frac{7}{4}$ Ans. (3)

Sol.
$$12x^2 - 7x + 1 = 0$$

 $x = \frac{1}{3}, \frac{1}{4}$
Let $P\left(\frac{A}{B}\right) = \frac{1}{3} & P\left(\frac{B}{A}\right) = \frac{1}{4}$
 $\frac{P(A \cap B)}{P(B)} = \frac{1}{3} & \frac{P(A \cap B)}{P(A)} = \frac{1}{4}$
 $\Rightarrow P(B) = 0.3$
 $\& P(A) = 0.4$
 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
 $= 0.3 + 0.4 - 0.1 = 0.6$
Now $\frac{P(\overline{A} \cup \overline{B})}{P(\overline{A} \cap \overline{B})} = \frac{P(\overline{A \cap B})}{P(\overline{A} \cup B)}$
 $= \frac{1 - P(A \cap B)}{1 - P(A \cup B)} = \frac{1 - 0.1}{1 - 0.6} = \frac{9}{4}$

18. The sum of all values of $\theta \in [0, 2\pi]$ satisfying $2\sin^2\theta = \cos 2\theta$ and $2\cos^2\theta = 3\sin\theta$ is

(1)
$$\frac{\pi}{2}$$
 (2) 4π
(3) $\frac{5\pi}{4}$ (4) π

Sol.
$$2\sin^{2}\theta = \cos 2\theta$$
$$2\sin^{2}\theta = 1 - 2\sin^{2}\theta$$
$$4\sin^{2}\theta = 1$$
$$\sin^{2}\theta = \frac{1}{4}$$
$$\sin\theta = \pm \frac{1}{2}$$
$$2\cos^{2}\theta = 3\sin\theta$$
$$2 - 2\sin^{2}\theta + 3\sin\theta - 2 = 0$$
$$(2\sin\theta - 1)(2\sin\theta - 2) = 0$$
$$\sin\theta = \frac{1}{2}$$

so common equation which satisfy both equations

is
$$\sin\theta = \frac{1}{2}$$

 $\theta = \frac{\pi}{6}, \frac{5\pi}{6} \quad (\theta \in [0, 2\pi])$
Sum = π

OVE	RSEAS		
19.	Let the curve $z(1 + i) + \overline{z}(1-i) = 4$, $z \in C$, divide		
	the region $ z - 3 \le 1$ into two parts of areas α and		
	β . Then $ \alpha - \beta $ equals :		
	(1) $1 + \frac{\pi}{2}$ (2) $1 + \frac{\pi}{3}$		
	(3) $1 + \frac{\pi}{4}$ (4) $1 + \frac{\pi}{6}$		
Ans.	(1)		
Sol.	Let $z = x + iy$ (x + iy)(1 + i) + (x - iy)(1 - i) = 4 x + ix + iy - y + x - ix - iy - y = 4 2x - 2y = 4 x - y = 2 $ z - 3 \le 1$ $(x - 3)^2 + y^2 \le 1$ Area of shaded region $= \frac{\pi \cdot 1^2}{4} - \frac{1}{2} \cdot 1 \cdot 1 = \frac{\pi}{4} - \frac{1}{2}$		
	Area of unshaded region inside the circle		
	$= \frac{3}{4}\pi .1^{2} + \frac{1}{2}.1.1 = \frac{3\pi}{4} + \frac{1}{2}$		
	$\therefore \text{ difference of area} = \left(\frac{3\pi}{4} + \frac{1}{2}\right) - \left(\frac{\pi}{4} - \frac{1}{2}\right)$		
	$=\frac{\pi}{2}+1$		
20.	The area of the region enclosed by the curves $y = x^2 - 4x + 4$ and $y^2 = 16 - 8x$ is :		
	(1) $\frac{8}{3}$ (2) $\frac{4}{3}$		
	(3) 5 (4) 8		
Ans.	(1)		
Sol.			
-			

 $y = (x - 2)^2$, $y^2 = 8(x - 2)$

 $=\frac{16ab}{2}=\frac{16\times\frac{1}{4}\times2}{2}=\frac{8}{2}$

 $y = x^2$, $y^2 = -8x$

SECTION-B

21. Let y = f(x) be the solution of the differential equation $\frac{dy}{dx} + \frac{xy}{x^2 - 1} = \frac{x^6 + 4x}{\sqrt{1 - x^2}}, -1 < x < 1$ such that f(0) = 0. If $\int_{-\infty}^{\frac{1}{2}} f(x) dx = 2\pi - \alpha$ then α^2 is equal to _____. Ans. (27) **Sol.** I.F. $e^{-\frac{1}{2}\int \frac{2x}{1-x^2}dx} = e^{-\frac{1}{2}\ell n(1-x^2)} = \sqrt{1-x^2}$ $y \times \sqrt{1-x^2} = \int (x^6 + 4x) dx = \frac{x^7}{7} + 2x^2 + c$ Given $y(0) = 0 \Rightarrow c = 0$ $y = \frac{\frac{x'}{7} + 2x^2}{\sqrt{1 - x^2}}$ Now, $6\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{\frac{x^7}{7} + 2x^2}{\sqrt{1 - x^2}} dx = 6\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{2x^2}{\sqrt{1 - x^2}} dx$ $=24\int_{-\infty}^{\frac{1}{2}}\frac{x^2}{\sqrt{1-x^2}}dx$ Put $x = \sin\theta$ $dx = \cos\theta \ d\theta$ $=24\int_{-\infty}^{\overline{6}}\frac{\sin^2\theta}{\cos\theta}\cos\theta d\theta$ $=24\int_{-\infty}^{\overline{6}} \left(\frac{1-\cos 2\theta}{2}\right) d\theta = 12\left[\theta - \frac{\sin 2\theta}{2}\right]_{0}^{\frac{\pi}{6}}$ $=12\left(\frac{\pi}{6}-\frac{\sqrt{3}}{4}\right)$ $= 2\pi - 3\sqrt{3} \\ \alpha^2 = (3\sqrt{3})^2 = 27$

22. Let A(6, 8), B(10 cosα, -10 sinα) and C (-10 sinα, 10 cosα), be the vertices of a triangle. If L(a, 9) and G(h, k) be its orthocenter and centroid respectively, then (5a - 3h + 6k + 100 sin2α) is equal to ______
Ans. (145)

Sol. All the three points A, B, C lie on the circle

$$x^{2} + y^{2} = 100$$
 so circumcentre is (0, 0)
 $\begin{array}{r} 1 & 2 \\ \hline 0(0,0) & G(h,k) & L(a,9) \end{array}$
 $\begin{array}{r} \frac{a+0}{3} = h \Rightarrow a = 3h \\ and \frac{9+0}{3} = k \Rightarrow k = 3 \\ also centroid \frac{6+10\cos\alpha - 10\sin\alpha}{3} = h \\ \Rightarrow 10(\cos\alpha - \sin\alpha) = 3h - 6 \qquad \dots(i) \\ and \frac{8+10\cos\alpha - 10\sin\alpha}{3} = k \\ \Rightarrow 10(\cos\alpha - \sin\alpha) = 3k - 8 = 9 - 8 = 1\dots(i) \\ on squaring 100(1 - \sin2\alpha) = 1 \\ \Rightarrow 100\sin2\alpha = 99 \\ from equ. (i) and (ii) we get h = \frac{7}{3} \\ Now 5a - 3h + 6k + 100 \sin2\alpha \\ = 15h - 3h + 6k + 100 \sin2\alpha \\ = 12 \times \frac{7}{3} + 18 + 99 \\ = 145 \end{array}$

Let the distance between two parallel lines be 23. 5 units and a point P lie between the lines at a unit distance from one of them. An equilateral triangle PQR is formed such that Q lies on one of the parallel lines, while R lies on the other. Then $(QR)^2$ is equal to

θ)

If $\sum_{r=1}^{30} \frac{r^2 ({}^{30}C_r)^2}{{}^{30}C_{r-1}} = \alpha \times 2^{29}$, then α is equal to 24.

Sol.
$$\sum_{r=1}^{30} \frac{r^2 ({}^{30}C_r)^2}{{}^{30}C_{r-1}}$$
$$= \sum_{r=1}^{30} r^2 \left(\frac{31-r}{r}\right) \cdot \frac{30!}{r!(30-r)!}$$
$$\left(\because \frac{{}^{30}C_r}{{}^{30}C_{r-1}} = \frac{30-r+1}{r} = \frac{31-r}{r} \right)$$
$$= \sum_{r=1}^{30} \frac{(31-r)30!}{(r-1)!(30-r)!}$$
$$= 30 \sum_{r=1}^{30} \frac{(31-r)29!}{(r-1)!(30-r)!}$$
$$= 30 \sum_{r=1}^{30} (30-r+1)^{29}C_{30-r}$$
$$= 30 \left(\sum_{r=1}^{30} (31-r)^{29}C_{30-r} + \sum_{r=1}^{30} {}^{29}C_{30-r} \right)$$
$$= 30(29 \times 2^{28} + 2^{29}) = 30(29+2)2^{28}$$
$$= 15 \times 31 \times 2^{29}$$
$$= 465(2^{29})$$
$$\alpha = 465$$

25. Let $A = \{1, 2, 3\}$. The number of relations on A, containing (1, 2) and (2, 3), which are reflexive and transitive but not symmetric, is _____.

Ans. (3)

Sol. Transitivity

 $(1, 2) \in \mathbb{R}, (2, 3) \in \mathbb{R} \Longrightarrow (1, 3) \in \mathbb{R}$ For reflexive $(1, 1), (2, 2), (3, 3) \in \mathbb{R}$ Now (2, 1), (3, 2), (3, 1) (3, 1) cannot be taken (1) (2, 1) taken and (3, 2) not taken (2) (3, 2) taken and (2, 1) not taken (3) Both not taken therefore 3 relations are possible.