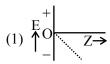


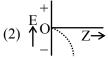
JEE-MAIN EXAMINATION - JANUARY 2025

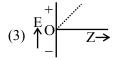
(HELD ON WEDNESDAY 29th JANUARY 2025)

TIME: 3:00 PM TO 6:00 PM

CHEMISTRY


SECTION-A


- 51. The calculated spin-only magnetic moments of $K_3[Fe(OH)_6]$ and $K_4[Fe(OH)_6]$ respectively are :
 - (1) 4.90 and 4.90 B.M.
 - (2) 5.92 and 4.90 B.M.
 - (3) 3.87 and 4.90 B.M.
 - (4) 4.90 and 5.92 B.M.


Ans. (2)


- 52. For hydrogen like species, which of the following graphs provides the most appropriate representation of E vs Z plot for a constant n?
 - [E : Energy of the stationary state,

Z : atomic number, n = principal quantum number]

Ans. (2)

- **53.** Given below are two statements:
 - **Statement (I):** In partition chromatography, stationary phase is thin film of liquid present in the inert support.
 - **Statement (II) :** In paper chromatography, the material of paper acts as a stationary phase.
 - In the light of the above statements, choose the **correct** answer from the options given below:
 - (1) Both **Statement I** and **Statement II** are false
 - (2) **Statement I** is true but **Statement II** is false
 - (3) Both **Statement I** and **Statement II** are true
 - (4) Statement I is false but Statement II is true

Ans. (2)

Sol. Statement I is true.

In partition chromatography, stationary phase is thin liquid film present in the inert support.

Statement II is false.

Because stationary phase in paper chromatography is water.

TEST PAPER WITH SOLUTION

- **54.** Identify the essential amino acids from below:
 - (A) Valine
- (B) Proline
- (C) Lysine
- (D) Threonine
- (E) Tyrosine

Choose the **correct** answer from the options given below:

- (1) (A),(C) and (D) only
- (2) (A),(C) and (E) only
- (3) (B),(C) and (E) only
- (4) (C),(D) and (E) only

Ans. (1)

- **Sol.** Valine, Lysine and Threonine are essential amino acids.
- 55. Which among the following halides will generate the most stable carbocation in Nucleophillic substitution reaction?

$$(1)$$
 Br

Ans. (4)

Sol. Stability order of carbocation

$$Ph \xrightarrow{Ph} Ph$$

56. Consider the equilibrium

$$CO(g) + 3H_2(g) \rightleftharpoons CH_4(g) + H_2O(g)$$

If the pressure applied over the system increases by two fold at constant temperature then

- (A) Concentration of reactants and products increases.
- (B) Equilibrium will shift in forward direction.
- (C) Equilibrium constant increases since concentration of products increases.
- (D) Equilibrium constant remains unchanged as concentration of reactants and products remain same.

Choose the **correct** answer from the options given below:

- (1) (A) and (B) only
- (2) (A), (B) and (D) only
- (3) (B) and (C) only
- (4) (A), (B) and (C) only

Ans. (1)

57. Given below are two statements:

Statement (I): NaCl is added to the ice at 0°C, present in the ice cream box to prevent the melting of ice cream.

Statement (II) : On addition of NaCl to ice at 0°C, there is a depression in freezing point.

In the light of the above statements, choose the **correct** answer from the options given below:

- (1) Statement I is false but Statement II is true
- (2) Both Statement I and Statement II are true
- (3) Both **Statement I** and **Statement II** are false
- (4) Statement I is true but Statement II is false

Ans. (2)

58. Given below are two statements:

Statement (I) : On nitration of m-xylene with HNO₃, H₂SO₄ followed by oxidation, 4-nitrobenzene-1, 3-dicarboxylic acid is obtained as the major product.

Statement (II) : CH₃ group is o/p-directing while-NO₂ group is m-directing group.

In the light of the above statements, choose the **correct** answer from the options given below:

- (1) Both **Statement I** and **Statement II** are false
- (2) Statement I is false but Statement II is true
- (3) Both **Statement I** and **Statement II** are true
- (4) Statement I is true but Statement II is false

Ans. (3)

Sol. Statement-I

$$CH_3 \xrightarrow{HNO_3/H_2SO_4} CH_3$$

$$(m-xylene) \qquad VO_2 \xrightarrow{Oxidation} COOH$$

$$COOH$$

$$VO_2$$

Statement-II

-CH₃ group is o/p directing while -NO₂ group is meta directing.

59. 0.1 M solution of KI reacts with excess of H₂SO₄ and KIO₃ solution. According to equation

$$5I^{-}+IO_{3}^{-}+6H^{+} \rightarrow 3I_{2}+3H_{2}O$$

Identify the **correct** statements:

- (A) 200 mL of KI solution reacts with 0.004 mol of KIO_3
- (B) 200 mL of KI solution reacts with 0.006 mol of $\rm H_2SO_4$
- (3) 0.5 L of KI solution produced 0.005 mol of I₂
- (4) Equivalent weight of KIO_3 is equal to $\left(\frac{\text{Molecular weight}}{5}\right)$

Choose the **correct** answer from the options given below:

- (1) (A) and (D) only
- (2) (B) and (C) only
- (3) (A) and (B) only
- (4) (C) and (D) only

Ans. (1)

60. Match List-I with List-II:

	List-I Applications		List-II Batteries/Cell		
	(A)	Transistors	(I)	Anode - Zn/Hg;	
				Cathode - HgO + C	
	(B)	Hearing aids	(II)	Hydrogen fuel cell	
	(C)	Invertors	(III)	Anode – Zn;	
				Cathode - Carbon	
	(D)	Apollo	(IV)	Anode – Pb;	
	(D)	space ship		Cathode – Pb PbO ₂	

Choose the **correct** answer from the options given below:

- (1) (A)-(III), (B)-(I), (C)-(IV), (D)-(II)
- (2) (A)-(III), (B)-(II), (C)-(IV), (D)-(I)
- (3) (A)-(IV), (B)-(III), (C)-(II), (D)-(I)
- (4) (A)-(II), (B)-(III), (C)-(IV), (D)-(I)

Ans. (1)

- **61.** O_2 gas will be evolved as a product of electrolysis of:
 - (A) an aqueous solution of AgNO₃ using silver electrodes.
 - (B) an aqueous solution of AgNO₃ using platinum electrodes.
 - (C) a dilute solution of H₂SO₄ using platinum electrodes.
 - (D) a high concentration solution of H₂SO₄ using platinum electrodes.

Choose the **correct** answer from the options given below:

- (1) (B) and (C) only
- (2) (A) and (D) only
- (3) (B) and (D) only
- (4) (A) and (C) only

Ans. (1)

- Identify the homoleptic complexes with odd **62.** number of d electrons in the central metal.
 - (A) $[FeO_4]^{2-}$
- (B) $[Fe(CN)_6]^{3-}$
- (C) $[Fe(CN)_5NO]^{2-}$
- (D) $[CoCl_4]^{2-}$
- (E) $[Co(H_2O)_3F_3]$

Choose the **correct** answer from the options given below:

- (1) (B) and (D) only
- (2) (C) and (E) only
- (3) (A), (B) and (D) only (4) (A), (C) and (E) only

- Ans. (1)
- Total number of sigma (σ) _____ and pi(π)_ **63.** bonds respectively present in hex-1-en-4-yne are:
 - (1) 13 and 3
- (2) 11 and 3
- (3) 3 and 13
- (4) 14 and 3

Ans. (1)

 σ bonds = 13

 π bonds = 3

64. $C(diamond) \rightarrow C(graphite) + X kJ mol^{-1}$ $C(diamond) + O_2(g) \rightarrow CO_2(g) + Y kJ mol^{-1}$ $C(graphite) + O_2(g) \rightarrow CO_2(g) + Z kJ mol^{-1}$

At constant temperature. Then

- (1) X = Y + Z
- (2) X = Y + Z
- (3) X = -Y + Z
- (4) X = Y Z
- Ans. (4)
- **65.** Given below are two statements:

Statement (I): It is impossible to specify simultaneously with arbitrary precision, both the linear momentum and the position of a particle.

Statement (II): If the uncertainty in the measurement of position and uncertainty measurement of momentum are equal for an electron, then the uncertainty in the measurement

of velocity is
$$\geq \sqrt{\frac{h}{\pi}} \times \frac{1}{2m}$$
.

In the light of the above statements, choose the **correct** answer from the options given below:

- (1) **Statement I** is true but **Statement II** is false.
- (2) Both **Statement I** and **Statement II** are true.
- (3) **Statement I** is false but **Statement II** is true.
- (4) Both Statement I and Statement II are false.
- Ans. (2)

66. Which one of the following reaction sequences will give an azo dye?

(1) NO₂
$$(i)$$
 Sn/HCl (ii) NaNO₂/HCl (iii) β -naphthol, NaOH

(2)
$$SO_3H_{\underbrace{(ii) SOCl_2}_{(iii) NH_3}}$$
 CH_2-Cl

(3)
$$(i)$$
 $70\%H_2SO_4$ (ii) PCl_5 NH_2

$$(4) \underbrace{ NH_2 \underbrace{(i) \, HCl/NaNO_2}_{CH_3}}_{(ii)} \underbrace{ CH_3}$$

Ans. (1)

Sol.
$$NO_2$$
 Sn/HCl NH_2 NaNO₂/HCl N_2 NH_2 NaNO₂/HCl N_2 NH_2 N

67. Drug X becomes ineffective after 50% decomposition. The original concentration of drug in a bottle was 16 mg/mL which becomes 4 mg/mL in 12 months. The expiry time of the drug in months is

> Assume that the decomposition of the drug follows first order kinetics.

- (1) 12
- (2) 2

(3)3

(4)6

Ans. (4)

- **68.** The type of oxide formed by the element among Li, Na, Be, Mg, B and Al that has the least atomic radius is:
 - $(1) A_2O_3$
- (2) AO₂
- (3) AO
- $(4) A_2O$

Ans. (1)

- **69.** First ionisation enthalpy values of first four group 15 elements are given below. Choose the correct value for the element that is a main component of apatite family:
 - (1) 1012 kJ mol⁻¹
- (2) 1402 kJ mol⁻¹
- (3) 834 kJ mol⁻¹
- (4) 947 kJ mol⁻¹

Ans. (1)

70. Which one of the following, with HBr will give a phenol?

$$(1) \begin{array}{|c|c|c|} \hline CH_2 & OCH_3 \\ \hline & OCH_3 \\ \hline & OCH_3 \\ \hline \end{array}$$

$$(2)$$
 CH₃

Ans. (2)

SECTION-B

71. Consider the following low-spin complexes K₃[Co(NO₂)₆], K₄[Fe(CN)₆], K₃[Fe(CN)₆], Cu₂[Fe(CN)₆] and Zn₂[Fe(CN)₆].
The sum of the spin-only magnetic moment values of complexes having yellow colour is ______
B.M. (answer is nearest integer)

Ans. (0)

72. Isomeric hydrocarbons → negative Baeyer's test
 (Molecular formula C₉H₁₂)
 The total number of isomers from above with four different non-aliphatic substitution sites is

Ans. (2)
Sol. O

Above two isomers of C₉H₁₂ have four different sites for aromatic electrophilic substitution reaction.

73. In the Claisen-Schmidt reaction to prepare, dibenzalacetone from 5.3 g benzaldehyde, a total of 3.51 g of product was obtained. The percentage yield in this reaction was %.

Ans. (60)

Sol. 2 Ph-C-HO
Benzaldehyde 5.3 gm $\frac{5.3}{106} = \frac{1}{20} \text{ Mol}$ Ph
Dibenzalacetone
(Product) 3.51 gm $\frac{3.51}{234} = 0.015 \text{ Mol}$ (Actual)

Theoretical = $\frac{1}{40}$ Mol

% yield =
$$\frac{0.015}{1/40} \times 100$$

 $\Rightarrow 60\%$

74. In the sulphur estimation, 0.20 g of a pure organic compound gave 0.40 g of barium sulphate. The percentage of sulphur in the compound is $_$ \times 10^{-1} %.

(Molar mass : O = 16, S = 32, Ba = 137 in g mol⁻¹)

Ans. (275)

Sol. Organic Compound \longrightarrow BaSO₄
0.20 gm 0.40 gm $\frac{0.40}{233} \text{mol}(\text{BaSO}_4)$ $\frac{0.40}{233} \text{mol} \text{ (Sulphur)}$ $\frac{0.40}{233} \times 32 \text{ gm (sulphur)}$

%S =
$$\frac{0.40 \times 32}{233} \times 100$$

0.20 = 27.5% or 275 × 10⁻¹ %

75. Total number of non bonded electrons present in NO_2^- ion based on Lewis theory is _____.

Ans. (12)