

54. For hydrogen atom, the orbital/s with lowest energy is/are :

(A) 4s	(B) 3p _x
$(\mathbf{O}) = 1$	(\mathbf{D}) 21

- (C) $3d_{x^2-y^2}$ (D) $3d_{z^2}$
- (E) $4p_z$

Choose the **correct** answer from the options given below :

(1) (A) and (E) only	(2) (B) only
(3) (A) only	<mark>(4)</mark> (B), (C) and (D) only

- **Sol.** In hydrogen atom the orbitals in a shell are degenerate means energy depends only on 'n'
 - $\therefore E_{3p_x} = E_{3d_{x^2-y^2}} = E_{3d_{y^2}}$
- **55.** In the given structure, number of sp and sp² hybridized carbon atoms present respectively are :

Number of sp and sp^2 hybridised carbon atom are 3 and 5.

- 56. Which of the following mixing of 1M base and 1M acid leads to the largest increase in temperature?(1) 30 mL HCl and 30 mL NaOH
 - (2) 30 mL CH₃COOH and 30 mL NaOH
 - (3) 50 mL HCl and 20 mL NaOH
 - (4) 45 mL CH₃COOH and 25 mL NaOH

Ans. (1)

57.

Sol. Higher the number of milli moles of acid or base reacted higher will be temperature rise.

Option (4) n_{acid} or n_{base} reacted = 30 m mol Option (2) n_{acid} or n_{base} reacted = 30 m mol but less energy will be released by neutralisation reaction of weak acid hence option (2) can not be correct.

Option (3) \Rightarrow 20 m mol

Option (4) \Rightarrow 25 m mol

Hence Correct Option (1)

Given below are two statements :

Statement(I) : Experimentally determined oxygen-oxygen bond lengths in the O_3 are found to be same and the bond length is greater than that of a O = O (double bond) but less than that of a single (O - O) bond.

Statement (II) : The strong lone pair-lone pair repulsion between oxygen atoms is solely responsible for the fact that the bond length in ozone is smaller than that of a double bond (O=O) but more than that of a single bond (O = O).

In the light of the above statements, choose the **correct** answer from the options given below:

- (1) Statement I is true but Statement II is false
- (2) Both Statement I and Statement II are true
- (3) Both Statement I and Statement II are false

(4) Statement I is false but Statement II is true

Ans. (1)

Sol. Due to resonance bond length is identical in ozone. Therefore statement I is true and statement II is false

. .

	LEN ISEAS		JEE-Main Exam Ses	sion-1
58.	Find the	e compound 'A' fro	om the following reaction	60.
	sequence	ces.		
	A—aqu	$a \rightarrow B \xrightarrow{(1)KI}$	$\xrightarrow{NO_2 NH_4OH} yellow ppt$	
	(1) ZnS		(2) CoS	
	(3) MnS	5	(4) Nis	
Ans.	(2)			
Sol.	CoS—	$\xrightarrow{\text{Aquaregia}} \text{CoCl}_2$	$\xrightarrow{\text{LKNO}_2/\text{NH}_4\text{OH}}$	
			$K_3[Co(NO_2)_6] \downarrow $ yellow	
59.	For the	reaction,		
	$H_2(g) +$	$I_2(g) \Longrightarrow 2HI(g)$	g)	
	Attainm	nent of equilibrium	m is predicted correctly	
	by:			
		2	I_2	Ans.
	(1)		H_2	Sol.
	(1)	Aola	———HI	
		∠ Time	2	
		1		
			—-Н2	61.
	(2)		I_2	
		Mol	—ні	8
		Time		\sim
		<u>u</u>	H ₂	
	(2)		-I2	
	(3)	lolar	HI	
		≥ Time		
		I IIIK		Ans.
		onc.	——Н ₂	501.
	(4)	lar c		
		Mo		
		Time	2	
Ans.	(2)			
Sol.	$H_{2} + I_{2}$	⇒2HI		
	Concen	tration of H_2 a	nd I_2 decreases untill	
	equilibr	ium condition a	nd concentration of HI	
	increase	es till equilibriu	m condition and after	
	equilibr	ium concentration	of all the reactant and	
		•		1

(January 2025)/24-01-2025/Evening Shift				
Match List-I with List-II.				
List-I	List-II			
(Transition metal ion)	(Spin	only	magnetic	
	mome	nt (B.M	.))	
(A) Ti ³⁺	(I) 3.87	7		
(B) V^{2+}	(II) 0.0	0		
(C) Ni ²⁺	(III) 1.	73		
(D) Sc^{3+}	(IV) 2.	84		
Choose the correct answer from the options given				
below :				
(1) (A)-(III), (B)-(I), (C)-(II), (D)-(IV)				

(2) (A)-(III), (B)-(I), (C)-(IV), (D)-(II)

(3) (A)-(IV), (B)-(II), (C)-(III), (D)-(I)

(4) (A)-(II), (B)-(IV), (C)-(I), (D)-(III)

(2)

Sol. $Sc^{+3} = 3d^{\circ}$	$\therefore \mu_{\rm spin} = 0$
$V^{+2} = 3d^3$	$\therefore \mu_{spin} = 3.87 \text{ B.M.}$
$Ni^{+2} = 3d^8$	$\therefore \mu_{spin} = 2.84 \text{ B.M.}$
$Ti^{+3} = 3d^1 \therefore$	$\mu_{spin} = 1.73$ B.M.

The elemental composition of a compound is 54.2%, C, 9.2% H and 36.6% O. If the molar mass of the compound is 132 g mol^{-1} , the molecular formula of the compound is :

[Given : The relative atomic mass of C : H : O =12:1:16]

(1)
$$C_4H_9O_3$$
 (2) $C_6H_{12}O_6$
(3) $C_6H_{12}O_3$ (4) $C_4H_8O_2$

(3)

l.	С	:	Н	:	0
	$\frac{54.2}{12}$:	9.2	:	$\frac{36.6}{16}$
	4.516	:	9.2	:	2.287
	$\frac{4.516}{2.287}$:	$\frac{9.2}{2.287}$:	$\frac{2.287}{2.287}$
	1.97	:	4.02	:	1

 $C_2H_4O \Rightarrow$ Empirical formula

E.F. mass = 24 + 4 + 16 = 44

and molar mass = 132

Hence molecular formula $= (C_2H_4O)_3$

$$= C_6 H_{12} O_3$$

Correct Option (3)

products remain constant.

Correct option (2)

🗘 ALLEN

OVE	KSEAS		
62.	When Ethane-1,2-diamine is added progressively	65.	Given below are two statements :
	to an aqueous solution of Nickel (II) chloride, the		Statement (I) : The first ionization energy of Pb is
	sequence of colour change observed will be : (1) Pale Blue \rightarrow Blue \rightarrow Green \rightarrow Violet		greater than that of Sn
	(2) Pale Blue \rightarrow Blue \rightarrow Violet \rightarrow Green		Statement(II) : The first ionization energy of Ge
	(3) Green \rightarrow Pale Blue \rightarrow Blue \rightarrow Violet		is greater than that of Si.
	(4) Violet \rightarrow Blue \rightarrow Pale Blue \rightarrow Green		In the light of the above statements, choose the
Ans.	(3)		
Sol.	+ 2		correct answer from the options given below :
[Ni(H	$[I_2O_6]^{+2}_{(aq)} + en_{(aq)} \rightarrow [Ni(H_2O)_4(en)]^{+2}_{(aq)} + 2H_2O$		(1) Statement I is true but Statement II is false
	reen $I(Q)(an)^{1+2} + an = \sum [Ni(H Q)(an)^{1+2} + 2H Q $		(2) Both Statement I and Statement II are false
Pa	$[120)_2(en)_2 (aq) + en_{(aq)} \rightarrow [101(n_20)_2(en)_2] (aq) + 2n_20$ le Blue		(3) Statement I is false but Statement II is true
[Ni(H	$[I_2O)_2(en)]^{+2}_{(aq)} + en_{(aq)} \rightarrow [Ni(en)_3]^{+2}_{(aq)} + 2H_2O$		(4) Both Statement I and Statement II are true
Blue	/ purple	Ans.	(1)
63.	The conditions and consequence that favours the $t_{a}^{3} e_{a}^{1}$ configuration in a metal complex are :	Sol.	Order of I.E. (in KJ/mol) :
	(1) weak field ligand, high spin complex		C > Si > Ge > Sn < Pb
	(2) strong field ligand, high spin complex		
	(3) strong field ligand, low spin complex		1086 /86 /61 /08 /15
	(4) weak field ligand, low spin complex	66.	$S(g) + \frac{3}{2} O_2(g) \rightarrow SO_3(g) + 2x \text{ kcal}$
Ans.	(1)		
Sol.	For 3d ⁴	1	$SO(x) + \frac{1}{2}O(x) + SO(x) + y$ [cos]
	If ligand is SFL : $t_{2g}^4 e_g^0$ (Low spin)		$SO_2(g) + \frac{1}{2} O_2(g) \rightarrow SO_3(g) + y$ kcal
()	If ligand is WFL : $t_{2g}^3 e_g^{-1}$ (High spin)		The heat of formation of $SO_2(g)$ is given by :
04.	(A) $-OCH_2$ and $-NHCOCH_2$ are activating		2x
	group		(1) $\frac{2x}{v}$ kcal
	(B) —CN and —OH are meta directing group		5
	(C) —CN and —SO ₃ H are meta directing group		(2) $y - 2x$ kcal
	(D) Activating groups act as ortho - and para		(3) 2x + y kcal
	directing groups		(4) $x + y$ kcal
	(E) Halides are activating groups	Ans	(2)
	Choose the correct answer from the options given	1115.	(2)
	below : $(1) (A) (C) \operatorname{and} (D) \operatorname{anle}$	Sol.	$SO_2 + \frac{1}{2}O_2 \longrightarrow SO_3 \qquad \Delta H = -y$
	(1) (A), (C) and (D) only (2) (A) (P) and (E) only		(g) 2 (g) (g)
	(2) (A), (B) and (B) only $(3) (A) only$		$\Delta H_{\rm r} = (\Delta H_{\rm f})_{\rm SO_3} - (\Delta H_{\rm f})_{\rm SO_2}$
	(4) (A) and (C) only		
Ans.	(1)		$-y = -2x - (\Delta H_f)_{SO_2}$
Sol.	(B) –CN is meta directing But –OH is ortho / pera		$(\Delta H_f)_{SO_2} = y - 2x$
	directing.		2

(E) Halides are deactivating groups.

Option (2)

🔿 ALLEN

JEE-Main Exam Session-1 (January 2025)/24-01-2025/Evening Shift

•NC

-Cl

-NC

List-II

Η

Н

Η

 NH_2

NH₂

Η

١H

٩H

R۱

- Match List-I with List-II **68.** The structure of the major product formed in the 67. following reaction is : List-I I (i)SnCl₂,HCl \rightarrow RCHO ·Cl AgCN (A) RCN (ii)H₃O⁺ Major product 0 Br CHO H (B) ClPd-BaSO (1)(2)CHO (i) CrO₂Cl₂, CS (C (ii) H₂O I **C**N (3)(4)CHO (i) CO, HCl (D)(ii) anhydrous AlCl₂/CuC B۱ List-II Ans. (2) (I) Etard reaction Cl AgCN Sol. (II) Gatterman -Koch reaction (III) Rosenmund reduction Br (IV) Stephen reaction 69. Match List-I with List-II. Choose the correct answer from the options given List-I below : (1) (A)-(IV), (B)-(III), (C)-(I), (D)-(II) (A) Adenine (I) (2) (A)-(III), (B)-(IV), (C)-(II), (D)-(I) (3) (A)-(I), (B)-(III), (C)-(II), (D)-(IV) (4) (A)-(III), (B)-(IV), (C)-(I), (D)-(II) Ans. (1) H₃C Sol. List-I (B) Cytosine (II) (A) RCN $\xrightarrow{(i)SnCl_2,HCl}{(ii)H_3O^+}$ RCHO Stephen reaction Thymine (C) (III) СНО Η (B) Pd-BaSO Rosenmund reduction CHO (D) Uracil (IV) (i)CrO₂Cl₂, CS (C)(ii)H₂O Choose the **correct** answer from the options given Etard reaction below : .CHO (1) (A)-(III), (B)-(IV), (C)-(II), (D)-(I) (i)CO. (D)(2) (A)-(III), (B)-(I), (C)-(IV), (D)-(II) (ii)anhydrous AlCl₂/CuCl (3) (A)-(IV), (B)-(III), (C)-(II), (D)-(I) (4) (A)-(III), (B)-(IV), (C)-(I), (D)-(II) Gatterman -Koch reaction
 - Ans. (1)

70. The successive 5 ionisation energies of an element are 800, 2427, 3658, 25024 and 32824 kJ/mol, respectively. By using the above values predict the group in which the above element is present :

- (1) Group 2
- (2) Group 13
- (3) Group 4
- (4) Group 14

Ans. (2)

Sol. The IE₄ is suddenly very high therefore element must have 3 valence $e^{-}(s)$ and it belong to group 13

SECTION-B

71. The observed and normal masses of compound MX_2 are 65.6 and 164 respectively. The percent degree of ionisation of MX_2 is ____%. (Nearest integer)

Ans. (75)

Sol.
$$MX_2 \rightarrow M^{+2} + 2X^-$$

 $i = \frac{normal molar mass}{observed molar mass}$
 $i = \frac{164}{65.6}$
 $1 + (3-1)\alpha = \frac{164}{65.6}$
 $2\alpha = \frac{98.4}{65.6}$
 $\alpha = 0.75$
percent dissociation = 75%
Ans. 75
72. The possible number of stereoisomer

72. The possible number of stereoisomers for 5-phenylpent-4-en-2-ol is _____.

Ans. (4)

n (stereogenic unit) = 2, $2^2 = 4$ stereoisomers are possible.

73. Consider a complex reaction taking place in three steps with rate constants k_1 , k_2 and k_3 respectively. The overall rate constant k is given by the expression $k = \sqrt{\frac{k_1k_3}{k_2}}$. If the activation energies of the three steps are 60, 30 and 10 kJ mol⁻¹ respectively, then the overall energy of activation

_. (Nearest integer)

1-1 ·

Ans. (20)
Sol.
$$K = \sqrt{\frac{K_1 K_3}{K_2}}$$

 $A.e^{-Ea/RT} = \sqrt{\frac{A_1 e^{-Ea_1/RT} \times A_3 e^{-Ea_3/RT}}{A_2 e^{-Ea_2/RT}}}$

By comparinig exponential term

$$\frac{E_a}{RT} = \frac{1}{2} \times \left(\frac{E_{a_1}}{RT} + \frac{E_{a_3}}{RT} - \frac{E_{a_2}}{RT} \right)$$
$$E_a = (E_{a_1} + E_{a_3} - E_{a_2}) / 2$$
$$E_a = (60 + 10 - 30) / 2 = 20 \text{ kJ mol}^{-1}$$
Ans. 20

QALLEN

JEE-Main Exam Session-1 (January 2025)/24-01-2025/Evening Shift

74.	The hydrocarbon (X) with molar mass 80 g mol ^{-1}	75.	In Carius method of estimation of halogen, 0.25 g
	and 90% carbon has degree of		of an organic compound gave 0.15 g of silver
			bromide (AgBr). The percentage of Bromine in the
	unsaturation.		organic compound is $\times 10^{-1}$ %
Ans.	(3)		(Nearest integer).
6.1	80×90 72		(Given : Molar mass of Ag is 108 and Br is
501.	Mass of carbon = $\frac{100}{100}$ = 72gm		80 g mol^{-1})
	72	Ans.	(255)
	Number of C-atoms = $\frac{72}{12} = 6$	Sol.	% Bromine = $\frac{\text{Molar Mass of Bromine}}{\text{Molar Mass of Silver bromide}}$
	Mass of hydrogen = $\frac{80 \times 10}{800}$ = 8gm		$\times \frac{\text{Weight of AgBr}}{\text{Weight of sample}} \times 100$
	Number of H-atoms = $\frac{8}{1} = 8$		$=\frac{80}{188}\times\frac{0.165}{0.25}\times100$
	So molecular formula C ₆ H ₈		$=\frac{4800}{25}=2553=255\times10^{-1}$
	D U = 6 + 1 - 8/2 = 7 - 4 = 3		188 2000 200 10
		R	SERS.