	JEE-MAIN EXAMINATION - JANUARY 2025								
(HE	LD ON THURSDAY 23rd JANUARY 2025)		TIME: 9:00 AM TO 12:00 NOON						
	CHEMISTRY		TEST PAPER WITH SOLUTIONS						
51.	SECTION-A The element that does not belong to the same period of the remaining elements (modern periodic table) is:	53.	The incorrect statements among the following is (1) PH ₃ shows lower proton affinity than NH ₃ .						
Sol	 (1) Palladium (2) Iridium (3) Osmium (4) Platinum 		 (2) PF₃ exists but NF₅ does not. (3) NO₂ can dimerise easily. (4) SO₂ can act as an oxidizing agent, but not as a makering execut. 						
Sol.	(1) Palladium $\Rightarrow 5^{\text{th}}$ period Iridium, Osmium, Platinum $\Rightarrow 6^{\text{th}}$ Period Heat treatment of muscular pain involves radiation	Sol.	 reducing agent. (4) SO₂ can oxidise as well as reduce. Hence it can act as both oxidising and reducing 						
52.	of wavelength of about 900 nm. Which spectral line of H atom is suitable for this ? Given: Rydberg constant $R_{\rm H} = 10^5 \text{ cm}^{-1}, h = 6.6 \times 10^{-34} \text{ J s}, c = 3 \times 10^8 \text{ m/s})$ (1) Paschen series, $\infty \rightarrow 3$ (2) Lyman series, $\infty \rightarrow 1$ (3) Balmer series, $\infty \rightarrow 2$	54.	agent. CrCl ₃ .xNH ₃ can exist as a complex. 0.1 molal aqueous solution of this complex shows a depression in freezing point of 0.558°C. Assuming 100% ionisation of this complex and coordination number of Cr is 6, the complex will be						
Sol.	(4) Paschen series, $5 \rightarrow 3$ (1) $\lambda = 900 \text{ nm}$ H-atom (Z = 1) $= 9 \times 10^{-5} \text{ cm}$ $R_{H} = 10^{5} \text{ cm}^{-1}$ Ryderg eq. $= \frac{1}{\lambda} = R_{H}Z^{2} \times \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}}\right)$ $\Rightarrow \frac{1}{\lambda \times R_{H}} = \frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}}$ $\Rightarrow \frac{1}{9 \times 10^{-5} \text{ cm} \times 10^{5} \text{ cm}^{-1}} = \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}}\right)$ $\Rightarrow \frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}} = \frac{1}{9}$ It is possible when $n_{1} = 3$, $n_{2} = \infty$ Possible series $: \infty \rightarrow 3$	Sol.	(Given $K_f = 1.86 \text{ K kg mol}^{-1}$) (1) [Cr(NH ₃) ₆] Cl ₃ (2) [Cr(NH ₃) ₄ Cl ₂] Cl (3) [Cr(NH ₃) ₅ Cl] Cl ₂ (4) [Cr(NH ₃) ₃ Cl ₃] (3) Given : $\Delta T_f = 0.558^{\circ}C$ $k_f = 1.86 \frac{K \times kg}{mol}$ 0.1 m aq. sol. $\Rightarrow \Delta T_f = i \times k_f \times m$ $\Rightarrow 0.558 = i \times 1.86 \times 0.1$ $\Rightarrow i = 3$						

JEE-Main Exam Session-1 (January 2025)/23-01-2025/Morning Shift

55.	$\operatorname{FeO}_{4}^{2-} \xrightarrow{+2.0V} \operatorname{Fe}^{3+} \xrightarrow{0.8V} \operatorname{Fe}^{2+} \xrightarrow{-0.5V} \operatorname{Fe}^{0}$
	In the above diagram, the standard electrode
	potentials are given in volts (over the arrow).
	The value of $E^{\Theta}_{FeO_4^{2-}/Fe^{2+}}$ is
	(1) 1.7 V (2) 1.2 V
	(3) 2.1 V (4) 1.4 V
Sol.	(1)
	$FeO_{4}^{-2} \xrightarrow{E_{1}^{\circ}=2V}{n_{1}=3} Fe^{+3} \xrightarrow{E_{2}^{\circ}=0.8V}{n_{2}=1} Fe^{+2} \xrightarrow{E_{3}^{\circ}=05V}{Fe}$ $E_{4}^{\circ}=?$
	$n_4 = 4$
	$\Delta G_4^{\circ} = \Delta G_1^{\circ} + \Delta G_2^{\circ}$
	$\Rightarrow -n_4 F E_4^\circ = -n_1 F E_1^0 - n_2 F E_2^\circ$
	$\Rightarrow +4E_4^\circ = 3 \times 2 + (1 \times 0.8)$
	$\Rightarrow E_4^{\circ} = \frac{6.8}{4} V$
	\Rightarrow $E_4^\circ = 1.7V$
56	Match the LIST-I with LIST-II

I ICT I

			L131-11		
	Name reaction	Product			
			obtainable		
A.	Swarts reaction	I.	Ethyl benzene		
B.	Sandmeyer's reaction	II.	Ethyl iodide		
C.	Wurtz Fittig reaction	III.	Cyanobenzene		
D.	Finkelstein reaction	IV.	Ethyl fluoride		

I IST II

Choose the *correct* answer from the options given below:

- (1) A-II, B-III, C-I, D-IV
- (2) A-IV, B-I, C-III, D-II
- (3) A-IV, B-III, C-I, D-II
- (4) A-II, B-I, C-III, D-IV

Sol. (3)

Γ

LIST-I		LIST-II		
Name reaction		Product obtainable		
A.	Swarts reaction	I.	$Et-I \xrightarrow{KF} Et-F$	
B.	Sandmeyer's reaction	II.	$PhN_{2}^{\oplus}Cl^{-} \xrightarrow{CuCN/KCN} PhCN+N_{2}$	
C.	Wurtz Fittig reaction	III.	$\begin{array}{c} Ph-Cl + EtCl \xrightarrow{Na} \\ ether \end{array}$ $Ph-Et + Ph-Ph + Et-Et$	
D.	Finkelstein reaction	IV.	$Et-Cl \xrightarrow{NaI} Et-I + NaCl$	

57. Given below are two statements:

> Statement I: Fructose does not contain an aldehydic group but still reduces Tollen's reagent Statement II : In the presence of base, fructose undergoes rearrangement to give glucose.

> In the light of the above statements, choose the correct answer from the options given below

- (1) Statement I is false but Statement II is true
- (2) Both Statement I and Statement II are true
- (3) Both Statement I and Statement II are false
- (4) Statement I is true but Statement II is false

Sol. (2)

 2.8×10^{-3} mol of CO₂ is left after removing 10^{21} 58. molecules from its 'x' mg sample. The mass of CO₂ taken initially is

Given : $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$

- (1) 196.2 mg (2) 98.3 mg
- (3) 150.4 mg (4) 48.2 mg
- Sol. (1)

$$(\text{moles})_{\text{initial}} = \frac{x \times 10^{-3}}{44}$$
$$(\text{moles})_{\text{removal}} = \frac{10^{21}}{6.02 \times 10^{23}}$$
$$(\text{moles})_{\text{left}} = (\text{moles})_{\text{initial}} - (\text{moles})_{\text{removed}}$$
$$2.8 \times 10^{-3} = \frac{x \times 10^{-3}}{44} - \frac{10^{21}}{6.02 \times 10^{23}}$$
$$\Rightarrow x = 196.2 \text{ mg}$$

JEE-Main Exam Session-1 (January 2025)/23-01-2025/Morning Shift

59. Ice at -5°C is heated to become vapor with temperature of 110°C at atmospheric pressure. The entropy change associated with this process can be obtained from :

$$(1) \int_{268K}^{383K} C_{p} dT + \frac{\Delta H_{melting}}{273} + \frac{\Delta H_{boiling}}{373}$$

$$(2) \int_{268K}^{273K} \frac{C_{p,m}}{T} dT + \frac{\Delta H_{m}, fusion}{T_{f}} + \frac{\Delta H_{m,vaporisation}}{T_{b}}$$

$$+ \int_{273K}^{373K} \frac{C_{p,m} dT}{T} + \int_{373K}^{383K} \frac{C_{p,m} dT}{T}$$

$$(3) \int_{268K}^{383K} C_{p} dT + \frac{q_{rev}}{T}$$

$$(4) \int_{268K}^{273K} C_{p,m} dT + \frac{\Delta H_{m}, fusion}{T_{f}} + \frac{\Delta H_{m,vaporisation}}{T_{b}}$$

$$+ \int_{273K}^{373K} C_{p,m} dT + \frac{383K}{373K} C_{p,m} dT$$

Sol. (2)

$$Ice \rightarrow Ice \rightleftharpoons Water \rightarrow Water \rightleftharpoons Water \rightarrow Water 268 K 273 K 273 K 273 K 373 K 383 K (1) (2) (3) (4) (5)$$

$$\Delta S_{\text{overall}} = \Delta S_1 + \Delta S_2 + \Delta S_3 + \Delta S_4 + \Delta S_5$$

$$\Delta S_2 = \frac{\Delta H_{m \text{ fusion}}}{273} \qquad T_f = 273 \text{ 'K'}$$

$$\Delta \mathbf{S}_3 = \int_{273}^{373} \frac{\mathbf{C}_{\mathrm{p,m}} \mathbf{dT}}{\mathbf{T}}$$

$$\Delta S_4 = \frac{\Delta H_{\text{m vaporisation}}}{373} \qquad T_b = 373 \text{ 'K'}$$

$$\Delta S_5 = \int_{373}^{383} \frac{C_{p,m} dT}{T}$$

Answer = (2)

60. The d-electronic configuration of an octahedral Co(II) complex having magnetic moment of 3.95 BM is :

BM is :
(1)
$$t_{2g}^{6} e_{g}^{1}$$
 (2) $t_{2g}^{3} e_{g}^{0}$
(3) $t_{2g}^{5} e_{g}^{2}$ (4) $e^{4} t_{2}^{3}$
(3)
Co⁺² = (Ar)_{18} 3d^{7} 4s^{\circ}
1 1 e_{g}^{2}
1 1 t_{2g}^{5}
The complex that shows Facial isomerism is
(1) IG (2) IL (2) IL (2) IG (2)

(1) $[Co(NH_3)_3Cl_3]$ (2) $[Co(NH_3)_4Cl_2]^+$ (3) $[Co(en)_3]^{3+}$ (4) $[Co(en)_2Cl_2]^+$

- Meridional

Sol. (1)

Sol.

61.

Ma₃b₃ type complexes show Facial - Meridional isomerism

(i)
$$[Co(NH_3)_3Cl_3] \Rightarrow Ma_3b_3$$

(ii)
$$[Co(NH_3)_4Cl_2]^+ \Rightarrow Ma_4b_2$$

(iii) $[Co(en)_3]^{3+} \Rightarrow M(AA)_3$

(iv)
$$[Co(en)_2Cl_2] \Rightarrow M(AA)_2b_2$$

a, b, = NH₃, Cl⁻

$$AA = en$$

62. The major product of the following reaction is : excess HCHO

$$CH_3CH_2CH=O \xrightarrow{alkali}{reflux}?$$

(1)
$$CH_3-CH_2-CH_2-OH$$

(2) $CH_3-CH-CH=O$
 CH_2-OH
(3) CH_3-C-CH_2-OH
(4) $CH_3-C-CH=O$
 H_2
 CH_2

Sol. (3)

This is an example of Tollen's reaction i.e. multiple cross aldol followed by cross Cannizaro reaction

$$\begin{array}{c} CH_{3}CH_{2}CH=O \xrightarrow{2HCHO} & CH_{2}-OH \\ I \\ CH_{3}CH_{2}CH=O \xrightarrow{Alkali} & CH_{3}-C-CHO \\ I \\ CH_{2}-OH \\ \hline \\ HCHO \\ Alkali \end{array} \xrightarrow{CH_{2}-OH} + HCOO^{\Theta} \\ CH_{2}-OH \end{array}$$

JEE-Main Exam Session-1 (January 2025)/23-01-2025/Morning Shift

63. The correct stability order of the following species/molecules is :

Sol. (1)

q is aromatic r is nonaromatic p is antiaromatic

64. Propane molecule on chlorination under photochemical condition gives two di-chloro products, "x" and "y". Amongst "x" and "y", "x" is an optically active molecule. How many tri-chloro products (consider only structural isomers) will be obtained from "x" when it is further treated with chlorine under the photochemical condition?

(1) 4 (2) 2

(3) 5 (4) 3

Sol. (4)

"X" is CH₃-CH-CH₂ I I Cl Cl

$$X \xrightarrow{Cl_2}{hv} CH_3 \xrightarrow{CH}{CH} \xrightarrow{CH}{-CH} \xrightarrow{CH} \xrightarrow{CH}{-CH} \xrightarrow{CH} \xrightarrow{CH} \xrightarrow{CH} \xrightarrow{CH} \xrightarrow{CH} \xrightarrow{CH} \xrightarrow{CH$$

65. What amount of bromine will be required to convert 2 g of phenol into 2, 4, 6-tribromophenol ? (Given molar mass in g mol⁻¹ of C, H, O, Br are 12, 1, 16, 80 respectively)

Sol. (1)

$$\bigcirc H \\ + 3Br_2 \longrightarrow \bigcirc Br \\ Br \\ Br \\ Br$$

Moles of phenol = $\frac{2}{94} = 0.021$ \therefore Moles of bromine = $0.021 \times 3 = 0.064$

 \therefore Mass of bromine = 0.064 × 160 = 10.22 g

66. The correct set of ions (aqueous solution) with same colour from the following is :

(1)
$$V^{2+}$$
, Cr^{3+} , Mn^{3+} (2) Zn^{2+} , V^{3+} , Fe^{3+}
(3) Ti^{4+} V^{4+} Mn^{2+} (4) Sc^{3+} Ti^{3+} Cr^{2+}

Sol. (1)

- (1) V^{2+} (Violet), Cr^{3+} (Violet), Mn^{3+} (Violet)
- (2) Zn²⁺(Colourless), V³⁺(Green), Fe³⁺(Yellow)
- (3) Ti⁴⁺(Colourless), V⁴⁺(Blue), Mn²⁺(Pink)
- (4) Sc^{3+} (Colourless), Ti^{3+} (Purple), Cr^{2+} (Blue)

67. Given below are two statements :

Statement I : In Lassaigne's test, the covalent organic molecules are transformed into ionic compounds.

Statement II: The sodium fusion extract of an organic compound having N and S gives prussian blue colour with FeSO₄ and Na₄[Fe(CN)₆]

In the light of the above statements, choose the **correct** answer from the options given below

- (1) Both Statement I and Statement II are true
- (2) Both Statement I and Statement II are false
- (3) Statement I is false but Statement II is true
- (4) Statement I is true but Statement II is false
- Sol. (4)

The sodium fusion extract of organic compound having N & S gives blood red colour with $FeSO_4$ and $Na_4[Fe(CN)_6]$

68. Which of the following happens when NH_4OH is added gradually to the solution containing $1M A^{2+}$ and $1M B^{3+}$ ions ?

Given : $K_{sp}[A(OH)_2] = 9 \times 10^{-10}$ and

 $K_{sp}[B(OH)_3] = 27 \times 10^{-18}$ at 298 K.

- (1) $B(OH)_3$ will precipitate before $A(OH)_2$
- (2) A(OH)₂ and B(OH)₃ will precipitate together
- (3) $A(OH)_2$ will precipitate before $B(OH)_3$
- (4) Both $A(OH)_2$ and $B(OH)_3$ do not show precipitation with NH_4OH

70.

ALLEN

Sol. (1)

Condition for precipitation $Q_{ip} > K_{sp}$ For $[A(OH)_2]$ $[A^{2+}][OH^{-}]^{2} > 9 \times 10^{-10}$ $[A^{+2}] = 1 M$ \Rightarrow [OH⁻] > 3 × 10⁻⁵ M For $[B(OH)_3]$ $[B^{3+}][OH^{-}]^{3} > 27 \times 10^{-18}$ $[B^{3+}] = 1M$ \Rightarrow [OH⁻] > 3 × 10⁻⁶ M

So, B(OH)₃ will precipitate before A(OH)₂

69. Match the LIST-I with LIST-II

	LIST-I	LIST-II			
(C	lassification of molecules	(Example)			
	based on octet rule)				
A.	Molecules obeying octet	I.	NO, NO ₂		
	rule				
B.	Molecules with	II.	BCl ₃ , AlCl ₃		
	incomplete octet				
C.	Molecules with incomplete	III.	H ₂ SO ₄ , PCl ₅		
	octet with odd electron	X	0		
D.	Molecules with expanded	IV.	CCl ₄ , CO ₂		
	octet				

Choose the **correct** answer from the options given below :

- (1) A-IV, B-II, C-I, D-III
- (2) A-III, B-II, C-I, D-IV
- (3) A-IV, B-I, C-III, D-II
- (4) A-II, B-IV, C-III, D-I

(A) $A \rightarrow IV$

- (B) $B \rightarrow II$
- (C) $C \rightarrow I$

(D) $D \rightarrow III$

Which among the following react with Hinsberg's reagent? (A) [O] (C) CH₃-NH₂ (4) N(CH₃)₃ (E) Choose the correct answer from the options given below : (1) B and D only (2) C and D only (3) A, B and E only (4) A, C and E only (4) Sol. B and D are 3° amine which does not have replaceable H on N, So does not react.

SECTION-B

71. If 1 mM solution of ethylamine produces pH = 9, then the ionization constant (K_b) of ethylamine is 10^{-x} . The value of x is (nearest integer). [The degree of ionization of ethylamine can be neglected with respect to unity.]

Sol.
$$C_2H_5NH_2(aq) + H_2O \rightleftharpoons C_2H_2NH_3^+ + \overset{\odot}{O}H$$

 $C = 10^{-3} M$ - - -
 $C(1 - \alpha)$ $C\alpha$ $C\alpha$
 $\Rightarrow C = 10^{-3}$ $= 10^{-5}$ $= 10^{-5}$
 $\boxed{1 - \alpha \approx 1}$
Given, $P^H = 9 \Rightarrow P^{OH} = 5 \Rightarrow \begin{bmatrix} \overset{\odot}{O}H \end{bmatrix} = 10^{-5}M$
 $Now, K_b = \frac{[C_2H_5NH_3^+][\overset{\odot}{O}H]}{[C_2H_5NH_2]}$

$$\Rightarrow K_{\rm b} = \frac{10^{-5} \times 10^{-5}}{10^{-3}} = 10^{-7}$$

72. During "S" estimation, 160 mg of an organic compound gives 466 mg of barium sulphate. The percentage of Sulphur in the given compound is %.

> (Given molar mass in g mol⁻¹ of Ba : 137, S : 32, O:16)

Sol. (40)

Millimoles of BaSO₄ = $\frac{466}{233}$ = 2m mol

$$%S = \frac{\frac{466}{233} \times 32}{160} \times 100 = 40\%$$

ALLEN

JEE-Main Exam Session-1 (January 2025)/23-01-2025/Morning Shift

c (1 04

Consider the following sequence of reactions to 73. produce major product (A) CЦ

$$(A)$$

Molar mass of product (A) is $_____ g mol^{-1}$. (Given molar mass in g mol⁻¹ of C : 12, H : 1, O: 16, Br: 80, N: 14, P: 31)

Sol. (171)

Molar mass of product (C_7H_7Br) (A) is 171 g mol⁻¹

74. For the thermal decomposition of N₂O₅(g) at constant volume, the following table can be formed, for the reaction mentioned below :

2N	$_2O$) ₅ (g	g) —	> 21	N_2C	$D_4(g)$) +	$O_2($	(g))

S.No.	Time/s	Total pressure / (atm)	
1.	0	0.6	
2.	100	'x'	
K =	×10	⁻³ atm [nearest integer]	

Given : Rate constant for the reaction is $4.606 \times 10^{-2} \text{ s}^{-1}$.

0

 $\frac{P}{2}$

Sol. (900)

NTA. (897)

$$K_{N_2O_5} = 2 \times 4.606 \times 10^{-2} \text{ S}^{-1}$$

 $2N_2O_5(g) \longrightarrow 2N_2O_4(g) + O_2(g)$

P_i

$$P_{\rm f}$$
 0.6 – P

0.6

$$2 \times 4.606 \times 10^{-2} = \frac{2.303}{100} \log \frac{0.6}{0.6 - P}$$

0

Р

$$4 \log_{10} \frac{0.6}{0.6 - P}$$
$$10^4 = \frac{0.6}{0.6 - P}$$
$$\Rightarrow 0.6 \times 10^4 - 10^4 P = 0.6$$

$$\Rightarrow 10^{4} P = 0.6(10^{4} - 1)$$

$$P = (6000 - 0.6) \times 10^{-4}$$

$$= 5999. \times 10^{-4}$$

$$= 0.59994$$

$$P_{Total} = 0.6 + \frac{P}{2}$$

$$= 0.6 + 0.29997$$

$$= 0.89997$$

$$= 899.97 \times 10^{-3}$$
Ans. 900
Given by NTA
Given : 2N_2O_5(g) $\rightarrow 2N_2O_4(g) + O_2(g)$

$$t = 0 \quad 0.6 \qquad 0 \quad 0$$

$$t = 100s \quad 0.6 - x \qquad x \qquad x/2$$

$$P_{Total} = 0.6 + \frac{x}{2}$$
As given in equation
$$K_r = 4.606 \times 10^{-2} \sec^{-1}$$
(Here language conflict in question)
$$(K_r = \frac{KA}{2} \text{ not considered})$$

$$K_r t = \ln \frac{0.6}{0.6 - x}$$

$$4.606 \times 10^{-2} \times 100 = 2.303 \log \frac{0.4}{0.6}$$

$$P_{Total} = 0.6 + \frac{0.594}{2} = 0.897 \text{ atm}$$

= 897 × 10⁻³ atm

75. The standard enthalpy and standard entropy of decomposition of N₂O₄ to NO₂ are 55.0 kJ mol⁻¹ and 175.0 J/K/mol respectively. The standard free energy change for this reaction at 25°C in J mol⁻¹

– x

is (Nearest integer)

(2850) Sol.

$$\Delta H^{o}_{rxn} = 55 \text{ kJ/mol}, \qquad T = 298 \text{ K}$$

$$\Delta S^{o}_{rxn} = 175 \text{ J/mol}$$

$$\Delta G^{o}_{rxn} = \Delta H^{o}_{rxn} - T\Delta S^{o}_{rxn}$$

$$\Rightarrow \Delta G^{o}_{rxn} = 55000 \text{ J/mol} - 298 \times 175 \text{ J/mol}$$

$$\Rightarrow \Delta G^{o}_{rxn} = 55000 - 52150$$

$$\Rightarrow \Delta G^{o}_{rxn} = 2850 \text{ J/mol}$$