|                     | JEE-MAIN EXAMINAT                                                                                                                                                                                                              |              | I – JANUARY 2025                                                                                                                                                                                                                                                                                                                       |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (HE                 | LD ON WEDNESDAY 22 <sup>nd</sup> JANUARY 2025)                                                                                                                                                                                 |              | TIME:9:00 AM TO 12:00 NOON                                                                                                                                                                                                                                                                                                             |
|                     | CHEMISTRY                                                                                                                                                                                                                      |              | TEST PAPER WITH SOLUTIONS                                                                                                                                                                                                                                                                                                              |
| 51.                 | <b>SECTION-A</b><br>A solution of aluminium chloride is electrolysed<br>for 30 minutes using a current of 2A. The amount<br>of the aluminium deposited at the cathode is<br>[Given : molar mass of aluminium and chlorine are  | Sol.<br>54.  | $\begin{array}{c} CH_{3}-CH-CH=CH-CH_{3}\\ OH\\ It has 4 stereoisomers \begin{bmatrix} R \ cis & R \ trans\\ S \ cis & S \ trans \end{bmatrix}$<br>Which of the following electronegativity order is                                                                                                                                   |
| Ans.                | 27 g mol <sup>-1</sup> and 35.5 g mol <sup>-1</sup> respectively, Faraday<br>constant = 96500 C mol <sup>-1</sup> ].<br>(1) 1.660 g (2) 1.007 g<br>(3) 0.336 g (4) 0.441 g<br>(3)                                              | Ans.         | incorrect?<br>(1) Al $\leq$ Mg $\leq$ B $\leq$ N (2) Al $\leq$ Si $\leq$ C $\leq$ N<br>(3) Mg $\leq$ Be $\leq$ B $\leq$ N (4) S $\leq$ Cl $\leq$ O $\leq$ F                                                                                                                                                                            |
| Sol.                | gm equivalent of Al deposited = $\frac{\text{It}}{96500}$<br>$\frac{\text{w}}{27} \times 3 = \frac{2 \times 30 \times 60}{96500}$<br>w = 0.336 g,                                                                              | Sol.         | Li Be B C N O F<br>(E.N.)= 1 1.5 2 2.5 3 $3.5$ 4.0<br>On                                                                                                                                                                                                                                                                               |
| 52.                 | Which of the following statement is not true for radioactive decay ?<br>(1) Amount of radioactive substance remained after three half lives is $\frac{1}{8}$ th of original amount.<br>(2) Decay constant does not depend upon | (E.N<br>55.  | pauling<br>scale<br>Na Mg Al Si P S Cl<br>J.)= 0.9 1.2 1.5 1.8 2.1 2.5 3.0<br>Correct order Mg < Al < B < N<br>Lanthanoid ions with 4f <sup>7</sup> configuration are :                                                                                                                                                                |
|                     | temperature.<br>(3) Decay constant increases with increase in temperature.<br>(4) Half life is ln 2 times of $\frac{1}{\text{rate constant}}$ .                                                                                |              | <ul> <li>(A) Eu<sup>2+</sup></li> <li>(B) Gd<sup>3+</sup></li> <li>(C) Eu<sup>3+</sup></li> <li>(D) Tb<sup>3+</sup></li> <li>(E) Sm<sup>2+</sup></li> <li>Choose the correct answer from the options given below :</li> </ul>                                                                                                          |
| Ans.<br>Sol.<br>53. | (3)<br>Decay constant is independent of temperature.<br>How many different stereoisomers are possible for<br>the given molecule ?<br>$CH_3 - CH - CH = CH - CH_3$<br>OH<br>(1) 3 (2) 1<br>(3) 2 (4) 4                          | Ans.<br>Sol. | $\begin{aligned} & {}_{63}\text{Eu}^{2+} - [\text{Xe}] \ 4f^{7}6s^{0} \\ & {}_{64}\text{Gd}^{3+} - [\text{Xe}] \ 4f^{7} \ 5d^{0}6s^{0} \\ & {}_{63}\text{Eu}^{3+} - [\text{Xe}] \ 4f^{6} \ 6s^{0} \\ & {}_{65}\text{Tb}^{3+} - [\text{Xe}] \ 4f^{8} \ 6s^{0} \\ & {}_{62}\text{Sm}^{2+} - [\text{Xe}] \ 4f^{6} \ 6s^{0} \end{aligned}$ |
| Ans.                |                                                                                                                                                                                                                                |              | $Eu^{2+}$ & $Gd^{3+}$                                                                                                                                                                                                                                                                                                                  |

# JEE-Main Exam Session-1 (January 2025)/22-01-2025/Morning Shift

#### 

6. Match List-I with List-II

| List-I |                                  | List-II |                   |
|--------|----------------------------------|---------|-------------------|
| (A)    | $Al^{3+} < Mg^{2+} < Na^+ < F^-$ | (I)     | Ionisation        |
|        |                                  |         | Enthalpy          |
| (B)    | B < C < O < N                    | (II)    | Metallic          |
|        |                                  |         | character         |
| (C)    | B < Al < Mg < K                  | (III)   | Electronegativity |
| (D)    | Si < P < S < Cl                  | (IV)    | Ionic radii       |

Choose the **correct** answer from the options given below :

(1) A-IV, B-I, C-III, D-II (2) A-II, B-III, C-IV, D-I (3) A-IV, B-I, C-II, D-III (4) A-III, B-IV, C-II, D-I

#### Ans. (3)

**Sol.** Ionic radii  $-Al^{3+} < Mg^{2+} < Na^+ < F^-$ 

 $Ionisation\ energy-B < C < O < N$ 

Metallic character -B < Al < Mg < K

Electron negativity – Si < P < S < Cl

- **57.** Which of the following acids is a vitamin ?
  - (1) Adipic acid (2) Aspartic acid
  - (3) Ascorbic acid (4) Saccharic acid

#### Ans. (3)

- **Sol.** Vitamin-C is Ascorbic acid.
- 58. A liquid when kept inside a thermally insulated closed vessel at 25°C was mechanically stirred from outside. What will be the correct option for the following thermodynamic parameters ?
  - (1)  $\Delta U > 0$ , q = 0, w > 0 (2)  $\Delta U = 0$ , q = 0, w = 0
  - (3)  $\Delta U < 0, q = 0, w > 0$  (4)  $\Delta U = 0, q < 0, w > 0$

#### Ans. (1)

- **Sol.** Thermally insulated  $\Rightarrow q = 0$ from I<sup>st</sup> law
  - $\Delta \mathbf{U} = \mathbf{q} + \mathbf{w}$
  - $\Delta U = w$

 $w > 0, \Delta U > 0$ 

**59.** Radius of the first excited state of Helium ion is given as :

 $a_0 \rightarrow$  radius of first stationary state of hydrogen atom.

(1) 
$$r = \frac{a_0}{2}$$
 (2)  $r = \frac{a_0}{4}$  (3)  $r = 4a_0$  (4)  $r = 2a_0$ 

Ans. (4)

**Sol.**  $r = a_0 \frac{n^2}{Z} = a_0 \cdot \frac{(2)^2}{2} = 2a_0.$ 

60. Given below are two statements :

Statement I :  $CH_3 - O - CH_2 - CI$  will undergo

 $S_N$ 1 reaction though it is a primary halide.

Statement II : 
$$CH_3 - C - CH_2 - Cl$$
 will not  
 $CH_3 - C - CH_2 - Cl$  will not

undergo  $S_N 2$  reaction very easily though it is a primary halide.

In the light of the above statements, choose the

**most appropriate answer** from the options given below :

(1) Statement I is incorrect but Statement II is correct.

(2) Both Statement I and Statement II are incorrect

(3) Statement I is correct but Statement II is incorrect

(4) Both **Statement I** and **Statement II** are correct.

#### Ans. (4)

Sol.  $CH_3$ –O– $CH_2$ –Cl will undergo  $S_N1$  mechanism

because  $CH_3 - O - CH_2$  is highly stable.

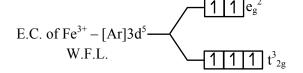
 $\begin{array}{c} CH_3 \\ I \\ H_3C-C-C-CH_2-CI \\ I \\ CH_3 \end{array} (Neopentyl chloride) will undergo <math>S_N 2$  mechanism at a slow rate because it's sterically crowded

# JEE-Main Exam Session-1 (January 2025)/22-01-2025/Morning Shift

|                   | LEN JEE-Main Exam Ses                                                                                                                                          | sion-1 | (January 2025)/22-01-2025/Morning Shitt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>61.</b> G      | iven below are two statements :                                                                                                                                | 63.    | The IUPAC name of the following compound is :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                   | Statement I : One mole of propyne reacts with                                                                                                                  |        | COOH<br>I<br>CH <sub>3</sub> -CH-CH <sub>2</sub> -CH <sub>2</sub> -CH-CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   | excess of sodium to liberate half a mole of $H_2$ gas.                                                                                                         |        | (1) 2-Carboxy-5-methoxycarbonylhexane.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   | Statement II : Four g of propyne reacts with                                                                                                                   |        | (2) Methyl-6-carboxy-2,5-dimethylhexanoate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | NaNH <sub>2</sub> to liberate NH <sub>3</sub> gas which occupies                                                                                               |        | (3) Methyl-5-carboxy-2-methylhexanoate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | 224 mL at STP.                                                                                                                                                 |        | (4) 6-Methoxycarbonyl-2,5-dimethylhexanoic acid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   | In the light of the above statements, choose the                                                                                                               | Ans.   | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | most appropriate answer from the options given                                                                                                                 |        | $^{1}$ $^{1}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ $^{0}$ |
|                   | below:                                                                                                                                                         | Sol.   | $H^{-1}$ CH <sub>3</sub> -CH-CH <sub>2</sub> -CH-CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   | (1) Statement I is correct but Statement II is incorrect.                                                                                                      |        | 2 $3$ $4$ $5$ $5$ $6$ -Methoxycarbonly-2,5-dimethylhexanoic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   | (2) Both Statement I and Statement II are                                                                                                                      | 64.    | Which of the following electrolyte can be sued to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | <ul><li>incorrect</li><li>(3) Statement I is incorrect but Statement II is</li></ul>                                                                           |        | obtain $H_2S_2O_8$ by the process of electrolysis?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                   | correct                                                                                                                                                        |        | (1) Dilute solution of sodium sulphate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   | (4) Both Statement I and Statement II are correct.                                                                                                             |        | (2) Dilute solution of sulphuric acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ans.              | (1)                                                                                                                                                            |        | (3) Concentrated solution of sulphuric acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Sol.              |                                                                                                                                                                |        | (4) Acidified dilute solution of sodium sulphate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CH <sub>3</sub>   | $-C \equiv CH + \underset{(\text{excess})}{\text{Na}} \rightarrow CH_3 - C \equiv \overline{C} \overset{+}{\text{Na}} + \frac{1}{2} \overset{+}{H_2} \uparrow$ | Ans.   | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1 mole            | (excess) $2$<br>$\frac{1}{2}$ mole H <sub>2</sub>                                                                                                              | Sol.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                   | 2                                                                                                                                                              |        | At anode : $2450 \pm 245$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CH <sub>3</sub> - | $-C \equiv CH + NaNH_2 \rightarrow CH_3C \equiv \overline{C}Na + NH_3$                                                                                         | 65.    | $2\text{HSO}_4^- \rightarrow \text{H}_2\text{S}_2\text{O}_8 + 2\text{e}^-$<br>The compounds which give positive Fehling's test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4 gm              |                                                                                                                                                                | 05.    | are :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\frac{4}{40}$    | $= 0.1 \text{mole} \qquad \qquad \frac{0.1 \text{mole}}{2240 \text{ mole}}$                                                                                    |        | (A) CHO (B) CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | Statement I is correct but Statement II is                                                                                                                     |        | (C) $HOCH_2$ -CO-(CHOH) <sub>3</sub> -CH <sub>2</sub> -OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | incorrect                                                                                                                                                      |        | о<br>(D) <sup>СН</sup> 3-С-Н (E) СНО                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 62.               | A vessel at 1000 K contains $\mbox{CO}_2$ with a pressure of                                                                                                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                   | $0.5\ \text{atm.}$ Some of $\text{CO}_2$ is converted into CO on                                                                                               |        | Choose the CORRECT answer from the options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                   | addition of graphite. If total pressure at equilibrium                                                                                                         |        | given below :<br>(1) (A) (C) and (D) Only (C) (A) (D) and (D) Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                   | is 0.8 atm, then $K_P$ is :                                                                                                                                    |        | (1) (A),(C) and (D) Only (2) (A),(D) and (E) Only<br>(2) (C) (D) and (E) Only (A) (A) (D) and (C) Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   | (1) 0.18 atm (2) 1.8 atm (3) 0.3 atm (4) 3 atm.                                                                                                                | Ans.   | (3) (C), (D) and (E) Only (4) (A), (B) and (C) Only (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ans.              | (2)                                                                                                                                                            | Sol.   | $CH_3CH = O$ , $PhCH_2CH = O$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sol.              | $CO_2(g) + C(s) \Longrightarrow 2CO(g)$                                                                                                                        |        | $(C) \qquad (D) HOCH2 - C - (CHOH)3 - CH2OH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | 0.5 –<br>0.5–x 2x                                                                                                                                              |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                   | $P_{total} = 0.5 + x = 0.8$                                                                                                                                    |        | (E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   | x = 0.3                                                                                                                                                        |        | All gives positive Fehling test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                   | $K_{\rm p} = \frac{(0.6)^2}{0.2} = 1.8$                                                                                                                        |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                   |                                                                                                                                                                | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

# 

# JEE-Main Exam Session-1 (January 2025)/22-01-2025/Morning Shift


**66.** In which of the following complexes the CFSE,  $\Delta_0$ 

will be equal to zero?

(1)  $[Fe(NH_3)_6]Br_2$  (2)  $[Fe(en)_3]Cl_3$ (3)  $K_4[Fe(CN)_6]$  (4)  $K_3[Fe(SCN)_6]$ 

Ans. (4)

**Sol.** For complex  $K_3[Fe(SCN)_6]$ 



Calculation of CFSE

$$= (-0.4 \times 3 + 0.6 \times 2) \Delta_0$$

 $= 0 \Delta_0$ 

**67.** Arrange the following solutions in order of their increasing boiling points.

| (i) 10 <sup>-4</sup> M NaCl   | (ii) 10 <sup>-4</sup> M Urea       |
|-------------------------------|------------------------------------|
| (iii) 10 <sup>-3</sup> M NaCl | (iv) 10 <sup>-2</sup> M NaCl       |
| (1) (ii) < (i) < (iii) < (iv) | (2) (ii) < (i) $\cong$ (iii) < (iv |
| (3) (i) < (ii) < (iii) < (iv) | (4) (iv) < (iii) < (i) < (ii)      |

# Ans. (1)

**Sol.**  $\Delta T_b = i K_b \cdot m \cdot \infty i.C.$ 

where C = concentration

| Options | i.C.               |
|---------|--------------------|
| (i)     | $2 \times 10^{-4}$ |
| (ii)    | $1 \times 10^{-4}$ |
| (iii)   | $2 \times 10^{-3}$ |
| (iv)    | $2 \times 10^{-2}$ |

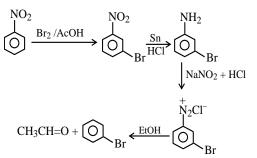
B.P. order :

**68.** The products formed in the following reaction sequence are :

$$(1) \xrightarrow{OH}_{Br}, CH_{3}-CHO$$

$$(1) \xrightarrow{OH}_{Br}, CH_{3}-CHO$$

$$(1) \xrightarrow{OH}_{Br}, CH_{3}-CHO$$


$$(2) \xrightarrow{OEt}_{Br}, CH_{3}-CHO$$

$$(3) \xrightarrow{OH}_{Br}, CH_{3}-CHO$$

$$(4) \xrightarrow{OH}_{Br}, CH_{3}-CHO$$

$$(3) \xrightarrow{OH}_{Br}, CH_{3}-CHO$$

Sol.



- **69.** From the magnetic behaviour of [NiCl<sub>4</sub>]<sup>2-</sup> (paramagnetic) and [Ni(CO)<sub>4</sub>] (diamagnetic), choose the correct geometry and oxidation state.
  - (1)  $[NiCl_4]^{2-}$ : Ni<sup>II</sup>, square planar
    - [Ni(CO)<sub>4</sub>] : Ni(0), square planar
  - (2)  $[NiCl_4]^{2-}$ : Ni<sup>II</sup>, tetrahedral
    - [Ni(CO)<sub>4</sub>] : Ni(0), tetrahedral
  - (3)  $[NiCl_4]^{2-}$ : Ni<sup>II</sup>, tetrahedral
    - [Ni(CO)<sub>4</sub>] : Ni<sup>II</sup>, square planar
  - (4)  $[NiCl_4]^{2-}$ : Ni(0), tetrahedral
    - [Ni(CO)<sub>4</sub>] : Ni(0), square planar

Ans. (2)

**Sol.** [NiCl<sub>4</sub>]<sup>2-</sup>

 $Ni^{+2} - [Ar] 3d^8 4s^0 \rightarrow sp^3$ , Tetrahedral Number of unpaired electron = 2 paramagentic [Ni(CO)<sub>4</sub>],

 $Ni(0) \rightarrow [Ar] 3d^{10} 4s^0$  (After rearrangement)

No unpaired electron

sp<sup>3</sup>, Tetrahedral, Diamagnetic

**70.** The **incorrect** statements regarding geometrical isomerism are :

(A) Propene shows geometrical isomerism.

(B) Trans isomer has identical atoms/groups on the opposite sides of the double bond.

(C) Cis-but-2-ene has higher dipole moment than trans-but-2-ene.

(D) 2-methylbut-2-ene shows two geometrical isomers.

(E) Trans-isomer has lower melting point that cis isomer.

# 

# JEE-Main Exam Session-1 (January 2025)/22-01-2025/Morning Shift

Choose the **CORRECT** answer from the options given below :

- (1) (A), (D) and (E) only (2) (C), (D) and (E) only
- (3) (B) and (C) only (4) (A) and (E) only

Ans. (1)

Sol. (A)  $CH_3$ -CH=CH<sub>2</sub>. GI is not possible

(B) Trans isomer has identical atoms/groups on the opposite side of double bond.

(C)  $\searrow$  >  $\searrow$  (dipole moment only) (D)  $\stackrel{H_3C-C=CH-CH_3}{CH_3}$  (does not show GI) 2-methylbut-2-ene

$$(E) \searrow > \bigvee (Melting point)$$
  
SECTION-B

# 71. Some $CO_2$ gas was kept in a sealed container at a pressure of 1 atm and at 273 K. This entire amount of $CO_2$ gas was later passed through an aqueous solution of $Ca(OH)_2$ . The excess unreacted $Ca(OH)_2$ was later neutralized with 0.1 M of 40 mL HCl. If the volume of the sealed container of $CO_2$ was x, then x is \_\_\_\_\_ cm<sup>3</sup> (nearest integer).

[Given : The entire amount of  $CO_2(g)$  reacted with

exactly half the initial amount of Ca(OH)2 present

in the aqueous solution.]

### Ans. (45)

Sol. Let moles of  $CO_2 = n$ moles of  $Ca(OH)_2$  total initially = 2n

excess  $Ca(OH)_2 = n$ 

gm equivalent of  $Ca(OH)_2 = gm$  equivalent of HCl

$$n \times 2 = 0.1 \times \frac{40}{1000} \times 1$$
$$n = 2 \times 10^{-3}$$

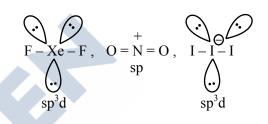
Volume of  $CO_2 = 2 \times 10^{-3} \times 22400 = 44.8 \text{ cm}^3$ 

72. In Carius method for estimation of halogens, 180 mg of an organic compound produced 143.5 mg of AgCl. The percentage composition of chlorine in the compound is \_\_\_\_\_\_%. [Given : molar mass in g mol<sup>-1</sup> of Ag : 108, Cl = 35.5]

Ans. (20)

Sol. 
$$n_{Cl} = n_{AgCl} = \frac{143.5 \times 10^{-3}}{143.5} = 10^{-3}$$
  
%  $Cl = \frac{10^{-3} \times 35.5}{180 \times 10^{-3}} \times 100 = 19.72$ 

**73.** The number of molecules/ions that show linear geometry among the following is


SO<sub>2</sub>, BeCl<sub>2</sub>, CO<sub>2</sub>, N<sub>3</sub><sup>-</sup>, NO<sub>2</sub>, F<sub>2</sub>O, XeF<sub>2</sub>, NO<sub>2</sub><sup>+</sup>, I<sub>3</sub><sup>-</sup>, O<sub>3</sub>

#### Ans. (6)

Sol. Linear species are

(sp

$$Cl - Be - Cl$$
,  $O = C = O$ ,  $N^- = N^+ = N$ 



74.  $A \rightarrow B$ 

The molecule A changes into its isomeric form B by following a first order kinetics at a temperature of 1000 K. If the energy barrier with respect to reactant energy for such isomeric transformation is 191.48 kJ mol<sup>-1</sup> and the frequency factor is  $10^{20}$ , the time required for 50%, molecules of A to become B is \_\_\_\_\_ picoseconds (nearest integer). [R = 8.314 J K<sup>-1</sup> mol<sup>-1</sup>]

#### Ans. (69)

Sol. 
$$t_{1/2} = \frac{0.693}{K}$$
  
 $K = Ae^{-Ea/RT}$   
 $= 10^{20} \times e^{-\frac{191.48 \times 10^3}{8.314 \times 1000}}$   
 $= 10^{20} \times e^{-23.031} = 10^{20} \times -e^{\ln 10 \times 10}$   
 $= \frac{10^{20}}{10^{10}} = 10^{10} \text{ sec.}$   
 $t_{1/2} = \frac{0.693}{10^{10}} = 6.93 \times 10^{-11}$   
 $= 69.3 \times 10^{-12} \text{ sec.}$ 

# 

