

 $A \rightarrow$ Benzamide Shows positive Lassaigh's test.

 $B \rightarrow Benzoic acid gives effervescence with aq.$ NaHCO₃.

 $C \rightarrow Ester$ gives fruity smell.

54. Choose the correct set of reagents for the following conversion.

(1) Br_2/Fe ; Cl_2 , Δ ; alc. KOH

- (2) Cl₂/Fe ; Br₂/anhy.AlCl₃ ; aq. KOH
- (3) $Br_2/anhy.AlCl_3$; Cl_2 , Δ ; aq. KOH
- (4) Cl₂/anhy.AlCl₃; Br₂/Fe; alc. KOH

Ans. (1)

Sol.

56. Given below are two statements :

Statement I : A homolepitc octahedral complex, formed using monodentate ligands, will not show stereoisomerism.

Statement II : cis– and trans– platin are heteroleptic complexes of Pd.

In the light of the above statements, choose the *correct* answer from the options given below.

(1) Both statement I and Statement II are false.

(2) Statement I is false but Statement II is true.

- (3) Both statement I and Statement II are true.
- (4) Statement I is true but Statement II is false.

Ans. (4)

EN

- 59. **Sol.** Homoleptic complex of type $[Ma_6]$ (Where a \Rightarrow monodentate ligand) cannot show geometrical as well as optical isomerism. Cis-platin and trans-platin has formula $[Pt(NH_3)_2Cl_2]$ which is a heteroleptic complex of platinum. NH Cis-platin Trans-platin The atomic number of the element from the 57. following with lowest 1st ionisation enthalpy is : (1) 32(2)35(3) 87 (4) 19 So Ans. (3) **Sol.** Atomic no. $32 \Rightarrow Ge$ Atomic no. $35 \Rightarrow Br$ Atomic no. $87 \Rightarrow Fr$ Atomic no. $19 \Rightarrow K$ Lowest first I.E. among the given element will be of Fr [87]. $Fr - [Rn] 7s^1$ 58. Which of the following binary mixture does not show the behaviour of minimum boiling azeotropes? (1) $H_2O + CH_3COC_2H_5$ (2) $C_6H_5OH + C_6H_5NH_2$ (3) CS₂ + CH₃COCH₃ $(4) CH_3OH + CHCl_3$ Ans. (2) Sol. Binary mixture of C₆H₅OH and C₆H₅NH₂ shows negative deviation from Raoult's law So vapour pressure of solution is less than V.P of pure C₆H₅OH & C₆H₅NH₂ So B.P. of solution is greater than boiling point of pure C₆H₅OH & C₆H₅NH₂ So shows maximum Boiling azeotrope
 - $HA(aq) \rightleftharpoons H^+(aq) + A^-(aq)$ The freezing point depression of a 0.1 m aqueous

solution of a monobasic weak acid HA is 0.20°C. The dissociation constant for the acid is Given :

 $K_{f}(H_{2}O) = 1.8 \text{ K kg mol}^{-1}$, molality = molarity (1) 1.38×10^{-3}

(2)
$$1.1 \times 10^{-2}$$

(3)
$$1.90 \times 10^{-3}$$

(4)
$$1.89 \times 10^{-10}$$

ol.
$$\Delta T_{f} = ik_{f}m$$

 $0.2 = i \times 1.8 \times 0.1$
 $i = \frac{20}{18} = \frac{10}{9}$
For $HA_{(aq)} \rightleftharpoons H^{+}_{(aq)} + A^{-}_{(aq)}$
 $t=0 \ 1$
 $t = t_{eq} 1 - \alpha \qquad \alpha \qquad \alpha$
 $i = 1 + \alpha$
 $\frac{10}{9} = 1 + \alpha$
 $\alpha = \frac{1}{9}$
 $K_{eq} = \frac{[H^{+}][A^{-}]}{[HA]} = \frac{C\alpha^{2}}{1 - \alpha}$
 $= \frac{0.1(\frac{1}{9})^{2}}{1 - \frac{1}{9}} = \frac{1}{720}$
 $K_{eq} = 1.38 \times 10^{-3}$

ALLEN

JEE-Main Exam Session-2 (April 2025)/08-04-2025/Evening Shift

What is the correct IUPAC name of 60.

- (1) 4-Ethyl-1-hydroxycyclopent-2-ene
- (2) 1-Ethyl-3-hydroxycyclopent-2-ene
- (3) 1-Ethylcyclopent-2-en-3-ol
- (4) 4-Ethylcyclopent-2-en-1-ol

Ans. (4)

Sol.

4-Ethylclopent-2-en-1-ol

61. The correct decreasing order of spin only magnetic moment values (BM) of Cu⁺, Cu^{2+,} Cr²⁺ and Cr³⁺

ions is :

(1)
$$Cu^+ > Cu^{2+} > Cr^{3+} > Cr^{2+}$$

(2) $Cu^{2+} > Cu^+ > Cr^{2+} > Cr^{3+}$
(3) $Cr^{2+} > Cr^{3+} > Cu^{2+} > Cu^+$
(4) $Cr^{3+} > Cr^{2+} > Cu^+ > Cu^{2+}$

Ans. (3)

Sol. Cu^+ : [Ar] $3d^{10}$, Spin only magnetic moment = 0 B.M.

> Cu^{+2} : [Ar] $3d^9$, Spin only magnetic moment = $\sqrt{3}$ B.M.

 Cr^{+2} : [Ar] 3d⁴, Spin only magnetic moment = $\sqrt{24}$ B.M.

 Cr^{+3} : [Ar] 3d³, Spin only magnetic moment = $\sqrt{15}$ B.M.

Order of μ : $Cr^{+2} > Cr^{+3} > Cu^{+2} > Cu^{+2}$

Which one of the following reactions will not lead 62. to the desired ether formation in major proportion? (iso-Bu \Rightarrow isobutyl, sec-Bu \Rightarrow sec-butyl, $nPr \Rightarrow n$ -propyl, ^tBu \Rightarrow tert-butyl, Et \Rightarrow ethyl) (1) $^{t}BuO Na + EtBr \rightarrow ^{t}Bu-O-Et$ $\longrightarrow O^{\ominus} \overset{\oplus}{\mathrm{Na}} + \mathrm{CH}_{3}\mathrm{Br} \longrightarrow \Big\langle$ O-CH₃ $(3) \overset{\oplus}{\operatorname{Na}} \overset{\bigcirc}{\operatorname{O}}$ \rightarrow + n -PrBr \rightarrow n -Pr-O· (4) iso-Bu $\stackrel{\odot}{N}a$ + sec – BuBr \rightarrow Sec–Bu–O–iso–Bu Ans. (4)

Sol.	(iso-Bu [⊖] ⊕a) (se	• Reaction	Major product			
63.	On combustion 0.	210 g of an org	ainc compound			
	containing C, H and O gave 0.127 g H ₂ O and 0.307 g CO ₂ . The percentages of hydrogen and oxygen in					
j,						
	the given organic compound respectively are:					
	(1) 53.41, 39.6	(2) 6.72, 5	53.41			
	(3) 7.55, 43.85	(4) 6.72, 3	9.87			
Ans.	(2)					
Sol.	In the combustion of organic compound, all "C" in CO_2 and all "H" in H_2O comes from organic compound					
	$C_x H_y O_z + O_2 \longrightarrow CO_2 + H_2 O_{0.210 \text{ gm}}$					

Weight of "C" in
$$CO_2 = \frac{12}{44} \times 0.307$$

= 0.0837 gm
Weight of "H" in H₂O = $\frac{2}{18} \times 0.127 = 0.0141$ g

64.

Sol.

JEE-Main Exam Session-2 (April 2025)/08-04-2025/Evening Shift

Correct statements for an element with atomic number 9 are A. There can be 5 electrons for which $m_s = +\frac{1}{2}$ and 4 electrons for which $m_s = -\frac{1}{2}$ B. There is only one electron in p_z orbital C. The last electron goes to orbital with n = 2 and l = 14. The sum of angular nodes of all the atomic orbitals is 1. Choose the correct answer from the options given below: (1) C and D Only (2) A and C Only (3) A, C and D Only (4) A and B Only (2) Element with atomic number 9 is Fluorine $F(9) = 1s^2 2s^2 2p^5$ 11 11 11 11 1 (A) 5 electrons can be up-spin $\left| m_s = +\frac{1}{2} \right|$ and 4 electrons can be down spin $\left| m_{s} = -\frac{1}{2} \right|$ (B) Unpaired electron can be in anyone of p_x , p_y or p_z orbital (C) Last electron is in 2p subshell with n = 2, $\ell = 1$ (D) Angular node for s-orbital = 0 while of each p-orbital = 1 Sum of all angular node = 3The number of species from the following that are involved in sp^3d^2 hybridization is $[Co(NH_3)_6]^{3+}$, SF₆, $[CrF_6]^{3-}$, $[CoF_6]^{3-}$, $[Mn(CN)_6]^{3-}$ and [MnCl₆]³⁻ (1)5(2) 6(4) 3 (3)4Ans. (4) NTA Ans. (3)

JEE-Main Exam Session-2 (April 2025)/08-04-2025/Evening Shift

Sol. In $[Co(NH_3]_6]^{3+}$, Co^{+3} : $[Ar]3d^6$, NH_3 is S.F.L Hybridisation state of Co^{3+} is d^2sp^3 In SF₆, Hybridisation state of sulphur is sp^3d^2 In $[CrF_6]^{3-}$, Cr^{+3} : $[Ar]3d^3$ Hybridisation state of Cr^{3+} is d^2sp^3 $[CoF_6]^{3-}$, Co^{+3} : $[Ar]3d^6$ F⁻ is W.F.L Hybridisation state of Co^{3+} is sp^3d^2 $[Mn(CN)_6]^{3-}$, Mn^{+3} : $[Ar]3d^4$ CN⁻ is S.F.L Hybridisation state of Mn^{3+} is d^2sp^3 $[MnCl_6]^{3-}$, Mn^{+3} : $[Ar]3d^4$ Cl⁻ is W.F.L Hybridisation state of Cl⁻ is sp^3d^2 Total number of sp^3d^2 hybridized molecules is 3

67. Match the LIST-I with LIST-II

LIST-I		LIST-II	
(Reagent)		(Functional Group	
		detected)	
A.	Sodium	I.	double
	bicarbonate		bond/unsaturation
	solution		
B.	Neutral ferric	II.	carboxylic acid
	chloride		
C.	ceric	III.	phenolic - OH
	ammonium		
	nitrate		
D.	alkaline	IV	alcoholic - OH
	KMnO ₄		

Choose the *correct* answer from the options given

below :

- (1) A-II, B-III, C-IV, D-I
- (2) A-II, B-III, C-I, D-IV
- (3) A-III, B-II, C-IV, D-I
- (4) A-II, B-IV, C-III, D-I

Ans. (1)

- Sol. (1) Carboxylic acid gives efferve scence with sodium bicarbonate solution
 - (2) Phenolic-OH gives voilet coloured complex with Neutral FeCl₃.
 - (3) Alcoholic-OH gives Red colour with cerric ammonium Nitrate.

(4) When alkaline $KMnO_4$ reacts with an unsaturated compound (Alkene or alkyne) the purple colour of $KMnO_4$ solution disappears, indicating positive test for unsaturation.

intramolecular aldol condensation, the major product formed is :

Ans. (1)

Sol. Aldol condensation reaction

JEE-Main Exam Session-2 (April 2025)/08-04-2025/Evening Shift

ALLEN

69. Match the LIST-I with LIST-II

LIST-I (Complex/Species)		LIST-II (Shape & magnetic moment)	
A.	[Ni(CO) ₄]	I.	Tetrahedral, 2.8 BM
B.	$[Ni(CN)_4]^{2-}$	II.	Square planar, 0 BM
C.	$[NiCl_4]^{2-}$	III.	Tetrahedral, 0 BM
D.	$[MnBr_4]^{2-}$	IV	Tetrahedral, 5.9 BM

Choose the *correct* answer from the options given below :

- (1) A-III, B-IV, C-II, D-I
- (2) A-I, B-II, C-III, D-IV
- (3) A-III, B-II, C-I, D-IV
- (4) A-IV, B-I, C-III, D-II

Ans. (3)

Sol. (A) $[Ni(CO)_4]$, $Ni^0 : [Ar]3d^8 4s^2$

Valence orbitals of Ni⁰ in pre-hybridisation state :

Tetrahedral, Diamagnetic, $\mu = 0$ B.M.

(B) $[Ni(CN)_4]^{2-}$, Ni^{+2} : $[Ar]_3d^84s^0$

Valence orbitals of Ni⁺² in pre-hybridisation state :

Square planar, Diamagnetic, $\mu = 0$ B.M.

(C) $[NiCl_4]^{2-}$, Ni^{+2} : $[Ar]3d^84s^0$

Valence orbitals of Ni⁺² in ground state :

Tetrahedral, paramagnetic, $\mu = \sqrt{8} = 2.8$ B.M.

(D) $[MnBr_4]^{2-}$, Mn^{+2} : $[Ar]3d^5$

Valence orbitals of Mn^{+2} in ground state :

Tetrahedral, paramagnetic, $\mu = \sqrt{35} = 5.9$ B.M.

70. Given below are two statements :

Statement I : H_2Se is more acidic than H_2Te . **Statement II :** H_2Se has higher bond enthalpy for dissociation than H_2Te .

In the light of the above statements, choose the *correct* answer from the options given below.

- (1) Both statement I and Statement II are false.
- (2) Both statement I and Statement II are true.
- (3) Statement I is true but Statement II is false.
- (4) Statement I is false but Statement II is true.

Ans. (4)

Sol. Acidic strength : $H_2Se < H_2Te$

 $\Delta_{dis}H : H_2Se > H_2Te$ [276 KJ/mol] [238 KJ/mol]

SECTION-B

71. Resonance in X_2Y can be represented as

$$\overset{\bigcirc}{\mathbf{X}} = \overset{\oplus}{\mathbf{X}} = \overset{\bigoplus}{\mathbf{Y}} \longleftrightarrow \overset{\bigcirc}{\mathbf{X}} \equiv \overset{\bigcirc}{\mathbf{X}} - \overset{\bigcirc}{\mathbf{Y}}$$

The enthalpy of formation of

$$X_2Y\left(X \equiv X(g) + \frac{1}{2}Y = Y(g) \rightarrow X_2Y(g)\right)$$
 is 80 kJ mol⁻¹.

The magnitude of resonance energy of X_2Y is $kJ \text{ mol}^{-1}$ (nearest integer value)

Given : Bond energies of $X \equiv X$, X = X, Y = Y and X = Y are 940, 410, 500 and 602 kJ mol⁻¹ respectively.

valence X : 3, Y : 2

Ans. (98)

JEE-Main Exam Session-2 (April 2025)/08-04-2025/Evening Shift

Sol.
$$\Delta H_{R,E} = \Delta H_{f(exp)} - \Delta H_{f(Theo)}$$

$$\Delta H_{f(exp)} \text{ for } X_2 Y_{(g)} = 80 \text{ kJ/mole}$$

for
$$\Delta H_{f(Theo)}$$

$$X_{2(g)} + \frac{1}{2} Y_{2(g)} \rightarrow X_2 Y_{(g)} \Delta H_f = ?$$

$$\Delta H_{f(Theo)} = \left(BE_{X=x} + \frac{1}{2}BE_{Y=Y}\right) - \left(BE_{X=X} + BE_{X=Y}\right)$$

$$= \left(940 + \frac{1}{2} \times 500\right) - (410 + 602)$$

$$= 178 \text{ kJ/mole}$$

$$\Delta H_{R,E} = 80 - 178$$

$$= -98 \text{ kJ/mol}$$

$$|\Delta H_{R,E}| = 98$$

72. The energy of an electron in first Bohr orbit of

H-atom is -13.6 eV. The magnitude of energy value of electron in the first excited state of Be³⁺ is

_____eV. (nearest integer value)

Sol. $E_{\rm T} = -13.6 \frac{z^2}{n^2} ev$

For energy of H-atom, energy of 1^{st} Bohr orbit $E_1 = -13.6 \text{ eV} [z = 1, n = 1]$ For Be⁺³ ion, energy of Ist E.S. [z = 4, n = 2]

 $\frac{E_{\rm H}}{E_{\rm Be^{+3}}} = \frac{z_1^2}{n_1^2} \times \frac{n_2^2}{z_2^2}$ $\frac{E_{\rm H}}{E_{\rm Be^{+3}}} = \frac{1}{1} \times \frac{4}{16}$ $E_{\rm Be^{+3}} = -13.6 \times 4 = -54.4 \, \text{eV}$ $|E_{\rm Be^{+3}}| = 54.4 \, \text{eV}$

73. 20 mL of sodium iodide solution gave 4.74 g silver iodide when treated with excess of silver nitrate solution. The molarity of the sodium iodide solution is _____ M. (Nearest Integer value) (Given : Na = 23, I = 127, Ag = 108, N = 14, O = 16 g mol⁻¹)

Sol. NaI_(aq) + AgNO_{3(aq)} \rightarrow AgI_(s) + NaNO₃(aq) M, 20 ml excess 4.74g Moles of I⁻ in NaI = Moles of (I⁻) in AgI = $\frac{4.74}{235}$ Moles of NaI = $\frac{4.74}{235}$ Molarity [NaI] = $\frac{4.74}{235 \times 0.02}$ = 1.008

74. The equilibrium constant for decomposition of $H_2O(g)$

$$H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2}O_2(g) (\Delta G^\circ = 92.34 \text{ kJ mol}^{-1})$$

is 8.0 × 10⁻³ at 2300 K and total pressure at equilibrium is 1 bar. Under this condition, the degree of dissociation (α) of water is _____ × 10⁻² (nearest integer value).

[Assume α is negligible with respect to 1]

Ans. (5)
Ans. (5)
H₂O(g)
$$\rightleftharpoons$$
 H_{2(g)} + $\frac{1}{2}$ O_{2(g)}
t = 0 1 mole
t = t_{eq} 1- α α $\frac{\alpha}{2}$
n_T = 1 + $\frac{\alpha}{2} \approx 1$ ($\alpha < 1$)
 $k_{p} = \frac{P_{H_{2}} \cdot P_{O_{2}}^{1/2}}{P_{H_{2}O}} = \frac{(\alpha \cdot P)(\frac{\alpha}{2}P)^{\frac{1}{2}}}{(1-\alpha)P}$
 $P = 1$
 $8 \times 10^{-3} = \frac{\alpha^{3/2}}{\sqrt{2}}$
 $\alpha^{3/2} = 8\sqrt{2} \times 10^{-3}$
 $\alpha^{3} = 128 \times 10^{-6}$
 $\alpha = \sqrt[3]{128} \times 10^{-2}$
 $= 5.03 \times 10^{-2}$

A

75 .	Consider the following half cell reaction	
	$Cr_2O_7^{2-}(aq) + 6e^- + 14H^+(aq) \rightarrow 2Cr^{3+}(aq) + 7H_2O(l)$	
	The reaction was conducted with the ratio of	
	$\frac{[Cr^{3+}]^2}{[Cr_2O_7^{2-}]} = 10^{-6}$. The pH value at which the EMF	
	of the half cell will become zero is	
	(nearest integer value)	
	[Given : standard half cell reduction potential	
	$E^{o}_{Cr_{2}O^{2^{-}}_{7},H^{+}/Cr^{3+}} = 1.33V, \frac{2.303RT}{F} = 0.059V$]	
Ans.	(10)	
Sol.	$Cr_2O_{7(aq)}^{-2} + 14H_{(aq)}^+ + 6e^- \rightarrow 2Cr_{(aq)}^{+3} + 7H_2O_{(\ell)}$	
	$E_{R} = E_{R}^{0} - \frac{0.059}{6} \log \frac{[Cr^{+3}]^{2}}{[Cr_{2}O_{7}^{-2}][H^{+}]^{14}}$	
	$0 = 1.33 - \frac{0.059}{6} \log \frac{10^{-6}}{[H^+]^{14}}$	ERS
	$\frac{1.33 \times 6}{0.059} = \log \frac{10^{-6}}{[\text{H}]^{14}}$	4PS
	$135.254 = -6 - 14 \log [H^+]$	
	141.254 = 14 pH	
	$pH = \frac{141.254}{14} = 10.08$	